Ratings of L‐DOPA‐Induced Dyskinesia in the Unilateral 6‐OHDA Lesion Model of Parkinson's Disease in Rats and Mice

M Angela Cenci1, Martin Lundblad1

1 Lund University, Lund, Sweden
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 9.25
DOI:  10.1002/0471142301.ns0925s41
Online Posting Date:  October, 2007
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit provides detailed protocols for establishing rodent models of L‐DOPA‐induced dyskinesia. The 6‐hydroxydopamine (6‐OHDA) lesion procedure is described in more detail for mice than for rats since the lesioning procedure in rats has been described extensively in previous work and is less difficult to perform. Unlike primate models, rodent models of L‐DOPA‐induced dyskinesia are relatively simple and fast to set up, thus being affordable to most laboratories. These models allow for studying the dyskinetic complications of L‐DOPA treatment on large groups of animals under strictly controlled experimental conditions. Along with information and structured protocols for the practical execution of the test, this unit provides a detailed description of the rating scale and the phenomenology of rodent abnormal involuntary movements, and suggestions for beginners. Curr. Protoc. Neurosci. 41:9.25.1‐9.25.23. © 2007 by John Wiley & Sons, Inc.

Keywords: L‐DOPA; rat; mouse; dyskinesia; Parkinson's disease; 6‐hydroxydopamine; akinesia; hyperkinesia

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: 6‐Hydroxydopamine (6‐OHDA) Lesion Surgery in Mice
  • Support Protocol 1: Drug‐Free Evaluation of 6‐OHDA Lesion Efficacy in Rodents Using the Cylinder Test
  • Support Protocol 2: Drug‐Free Evaluation of 6‐OHDA Lesion Efficacy in Rodents Using an Open Field Test
  • Alternate Protocol 1: Medial Forebrain Bundle (MFB) Lesions in Rats
  • Basic Protocol 2: Abnormal Involuntary Movements (AIMs) Rating in Rodents
  • Support Protocol 3: Abnormal Involuntary Movements (AIMs) Amplitude Ratings
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: 6‐Hydroxydopamine (6‐OHDA) Lesion Surgery in Mice

  • C57Bl mice, male or female (∼25 g when lesioned)
  • Sterile saline solution (NaCl, 0.9% w/v) with 0.02% ascorbic acid
  • 6‐OHDA‐HCl (6‐hydroxydopamine hydrochloride; Sigma)
  • Anesthetics (see recipe, also see appendix 4B):
    • Injectable anesthesia (different alternatives are provided in Reagents and Solutions)
    • Gaseous anesthesia (1.2% to 1.5% isoflurane/air mixture; continuous inhalation)
  • 70% ethanol
  • Post‐operative analgesia:
    • Buprenorphin, 0.05 mg/kg s.c or Bupivacain for local application on the skin surrounding the wound
  • Small vial
  • Box with a light‐safe lid
  • 1.5‐ml microcentrifuge tubes
  • Dental drill
  • Surgical tools including:
    • Scissors
    • Sharp forceps
    • Scalpels
    • Sterile cotton pads
    • Needles
    • Metal clips
  • Glass capillary tubes (Drummond microcaps, no. 1‐000‐0500)
  • 10‐µl Hamilton syringe
  • Parafilm
  • Stereotaxic frame with mouse adaptor (David Kopf Instruments)
  • Small scissors (optional)
  • Clean cage
  • Heating lamp

Support Protocol 1: Drug‐Free Evaluation of 6‐OHDA Lesion Efficacy in Rodents Using the Cylinder Test

  • Lesioned mice, at least 14 days post‐lesioning surgery
  • Control and/or sham‐lesioned animals
  • Transparent glass cylinder (without text, inner diameter 10 cm, height 14 cm)
  • Two mirrors (at least 30 × 30–cm)
  • Digital video camera with infrared night shot function
  • Tripod for video camera
  • Computer with digital video viewing capacity
  • Spreadsheets for manual annotation of left and right paw contacts during the analysis of the video films

Support Protocol 2: Drug‐Free Evaluation of 6‐OHDA Lesion Efficacy in Rodents Using an Open Field Test

  • Cardboard box (81 × 81–cm) with a grid (64 squares of 9 × 9–cm) painted on its floor.
  • Video camera
  • Tripod for video camera
  • Normal and lesioned mice ( protocol 1)
  • Manual counter

Alternate Protocol 1: Medial Forebrain Bundle (MFB) Lesions in Rats

  • Experimental mice or rats (lesioned, sham‐lesioned, control)
  • Room with controllable constant light (no windows or thick curtains)
  • L‐DOPA (see recipe)
  • Benserazide (see recipe)
  • Transparent cages (Plexiglas or plastic) with flat lids, dimensions 20(w) × 36(l) × 18(h) cm, one cage per animal (maximum 20 animals per rating session).
  • Cage rack large enough to accommodate all cages and to allow for at least 15‐cm separation between them
  • Timer
  • 27‐G injection needles (BD microlance)
  • 1‐ml injection syringes
PDF or HTML at Wiley Online Library



Literature Cited

   Ahlskog, J.E. and Muenter, M.D., 2001. Frequency of levodopa‐related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord. 16:448‐458.
   Andersson, M., Hilbertson, A., and Cenci, M.A. 1999. Striatal fosB expression is causally linked with L‐DOPA‐induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson's disease. Neurobiol. Dis. 6:461‐474.
   Bishop, C., Taylor, J.L., Kuhn, D.M., Eskow, K.L., Park, J.Y., and Walker, P.D. 2006. MDMA and fenfluramine reduce L‐DOPA‐induced dyskinesia via indirect 5‐HT1A receptor stimulation. Eur. J. Neurosci. 23:2669‐2676.
   Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H., and Del Tredici, K. 2004. Stages in the development of Parkinson's disease‐related pathology. Cell Tissue Res. 318:121‐134.
   Carta, M., Lindgren, H.S., Lundblad, M., Stancampiano, R., Fadda, F., and Cenci, M.A. 2006. Role of striatal L‐DOPA in the production of dyskinesia in 6‐hydroxydopamine lesioned rats. J. Neurochem. 96:1718‐1727.
   Cenci, M.A. 2007. Dopamine dysregulation of movement control in L‐DOPA‐induced dyskinesia. Trends Neurosci. 30:236‐243.
   Cenci, M.A. and Lundblad, M. 2005. Utility of 6‐hydroxydopamine lesioned rats in the preclinical screening of novel treatments for Parkinson disease. In Animal models of movement disorders ( M. LeDoux ed), pp 193‐2008. Elsevier Academic Press, San Diego.
   Cenci, M.A. and Lundblad, M. 2006. Post‐ versus presynaptic plasticity in L‐DOPA‐induced dyskinesia. J. Neurochem. 99:381‐392.
   Cenci, M.A., Campbell, K., and Bjorklund, A. 1993. Neuropeptide messenger RNA expression in the 6‐hydroxydopamine‐lesioned rat striatum reinnervated by fetal dopaminergic transplants: differential effects of the grafts on preproenkephalin, preprotachykinin and prodynorphin messenger RNA levels. Neuroscience 57:275‐296.
   Cenci, M.A., Lee, C.S., and Bjorklund, A. 1998. L‐DOPA‐induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin‐ and glutamic acid decarboxylase mRNA. Eur. J. Neurosci. 10:2694‐2706.
   Cenci, M.A., Whishaw, I.Q., and Schallert, T. 2002. Animal models of neurological deficits: How relevant is the rat? Nat. Rev. Neurosci. 3:574‐579.
   Da Prada, M., Kettler, R., Zurcher, G., Schaffner, R., and Haefely, W.E. 1987. Inhibition of decarboxylase and levels of dopa and 3‐O‐methyldopa: A comparative study of benserazide versus carbidopa in rodents and of Madopar standard versus Madopar HBS in volunteers. Eur. Neurol. 27:9‐20.
   Dekundy, A., Lundblad, M., Danysz, W., and Cenci, M.A. 2007. Modulation of L‐DOPA‐induced abnormal involuntary movements by clinically tested compounds: Further validation of the rat dyskinesia model. Behav. Brain Res. 179:76‐89.
   Delfino, M.A., Stefano, A.V., Ferrario, J.E., Taravini, I.R., Murer, M.G., and Gershanik, O.S. 2004. Behavioral sensitization to different dopamine agonists in a parkinsonian rodent model of drug‐induced dyskinesias. Behav. Brain Res. 152:297‐306.
   Fahn, S. 2000. The spectrum of levodopa‐induced dyskinesias. Ann. Neurol. 47:S2‐S9.
   Fahn, S. 2003. Description of Parkinson's disease as a clinical syndrome. Ann. N.Y. Acad. Sci. 991:1‐14.
   Iancu, R., Mohapel, P., Brundin, P., and Paul, G. 2005. Behavioral characterization of a unilateral 6‐OHDA‐lesion model of Parkinson's disease in mice. Behav. Brain Res. 162:1‐10.
   Lee, C.S., Cenci, M.A., Schulzer, M., and Bjorklund, A. 2000. Embryonic ventral mesencephalic grafts improve levodopa‐induced dyskinesia in a rat model of Parkinson's disease. Brain 123:1365‐1379.
   Lindgren, H.S., Rylander, D., Ohlin, K.E., Lundblad, M., and Cenci, M.A. 2007. The “motor complication syndrome” in rats with 6‐OHDA lesions treated chronically with L‐DOPA: Relation to dose and route of administration. Behav. Brain Res. 177:150‐159.
   Lundblad, M., Andersson, M., Winkler, C., Kirik, D., Wierup, N., and Cenci, M.A. 2002. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson's disease. Eur. J. Neurosci. 15:120‐132.
   Lundblad, M., Picconi, B., Lindgren, H., and Cenci, M.A. 2004. A model of L‐DOPA‐induced dyskinesia in 6‐hydroxydopamine lesioned mice: Relation to motor and cellular parameters of nigrostriatal function. Neurobiol. Dis. 16:110‐123.
   Lundblad, M., Usiello, A., Carta, M., Hakansson, K., Fisone, G., and Cenci, M.A. 2005. Pharmacological validation of a mouse model of L‐DOPA‐induced dyskinesia. Exp. Neurol. 194:66‐75.
   Mazzella, L., Yahr, M.D., Marinelli, L., Huang, N., Moshier, E., and Di Rocco, A. 2005. Dyskinesias predict the onset of motor response fluctuations in patients with Parkinson's disease on L‐dopa monotherapy. Parkinsonism Relat. Disord. 11:151‐155.
   Meissner, W., Ravenscroft, P., Reese, R., Harnack, D., Morgenstern, R., Kupsch, A., Klitgaard, H., Bioulac, B., Gross, C.E., Bezard, E., and Boraud, T. 2006. Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6‐OHDA‐lesioned rat in the presence of excessive extracellular striatal dopamine. Neurobiol. Dis. 22:586‐598.
   Mitsumoto, Y., Watanabe, A., Mori, A., and Koga, N. 1998. Spontaneous regeneration of nigrostriatal dopaminergic neurons in MPTP‐treated C57BL/6 mice. Biochem. Biophys. Res. Commun. 248:660‐663.
   Nutt, J.G., Woodward, W.R., Carter, J.H., and Gancher, S.T. 1992. Effect of long‐term therapy on the pharmacodynamics of levodopa. Relation to on‐off phenomenon. Arch. Neurol. 49:1123‐1130.
   Pinna, A., Pontis, S., and Morelli, M. 2006. Expression of dyskinetic movements and turning behaviour in subchronic L‐DOPA 6‐hydroxydopamine‐treated rats is influenced by the testing environment. Behav. Brain Res. 171:175‐178.
   Popovic, N., Fasano, S., Svensson, A., and Cenci, M.A. The profiles of lesion‐induced motor deficit and striatal responsiveness to L‐DOPA are dependent on the site of 6‐hydroxydopamine injection in the mouse. Submitted for publication.
   Rajput, A.H., Fenton, M.E., Birdi, S., Macaulay, R., George, D., Rozdilsky, B., Ang, L.C., Senthilselvan, A., and Hornykiewicz, O. 2002. Clinical‐pathological study of levodopa complications. Mov. Disord. 17:289‐296.
   Rousselet, E., Joubert, C., Callebert, J., Parain, K., Tremblay, L., Orieux, G., Launay, J.M., Cohen‐Salmon, C., and Hirsch, E.C. 2003. Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice. Neurobiol. Dis. 14:218‐228.
   Sauer, H. and Oertel, W.H. 1994. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6‐hydroxydopamine: A combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59:401‐415.
   Schallert, T. and Tillerson, J.L. 2000. Intervention strategies for degeneration of dopamine neurons in parkinsonism: optimizing behavioural assessment of outcome. In Central nervous system diseases (D.F. Emerich, R.L.I Dean, P.R. Sanberg, eds), pp 131‐151. Humana Press Totowa, N.J.
   Schallert, T., Fleming, S.M., Leasure, J.L., Tillerson, J.L., and Bland, S.T. 2000. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777‐787.
   Shen, H., Kannari, K., Yamato, H., Arai, A., and Matsunaga, M. 2003. Effects of benserazide on L‐DOPA‐derived extracellular dopamine levels and aromatic L‐amino acid decarboxylase activity in the striatum of 6‐hydroxydopamine‐lesioned rats. Tohoku J. Exp. Med. 199:149‐159.
   Shimohama, S., Sawada, H., Kitamura, Y., and Taniguchi, T. 2003. Disease model: Parkinson's disease. Trends Mol. Med. 9:360‐365.
   Stefanova, N., Lundblad, M., Tison, F., Poewe, W., Cenci, M.A., and Wenning, G.K. 2004. Effects of pulsatile L‐DOPA treatment in the double lesion rat model of striatonigral degeneration (multiple system atrophy). Neurobiol. Dis. 15:630‐639.
   Steiner H. and Kitai, S.T. 2001. Unilateral striatal dopamine depletion: time‐dependent effects on cortical function and behavioural correlates. Eur. J. Neurosci. 14:1390‐1404.
   Ungerstedt, U. 1968. 6‐Hydroxy‐dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5:107‐110.
   Westin, J.E., Andersson, M., Lundblad, M., and Cenci, M.A. 2001. Persistent changes in striatal gene expression induced by long‐term L‐DOPA treatment in a rat model of Parkinson's disease. Eur. J. Neurosci. 14:1171‐1176.
   Winkler, C., Kirik, D., Bjorklund, A., and Cenci, M.A. 2002. L‐DOPA‐induced dyskinesia in the intrastriatal 6‐hydroxydopamine model of parkinson's disease: Relation to motor and cellular parameters of nigrostriatal function. Neurobiol. Dis. 10:165‐186.
   Zarow, C., Lyness, S.A., Mortimer, J.A., and Chui, H.C. 2003. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch. Neurol. 60:337‐341.
Key References
   Lundblad et al., 2004. See above.
  The above key references contain valuable information on mouse 6‐OHDA lesions and AIMs rating.
   Iancu et al., 2005. See above.
  The above key references contain valuable information on rat AIMs.
   Lundblad et al., 2005. See above.
   Lee et al., 2000. See above.
   Lundblad et al., 2002. See above.
   Winkler et al., 2002. See above.
   Dekundy et al., 2007. See above.
   Lindgren et al., 2007. See above.
PDF or HTML at Wiley Online Library