Rodent Model of Activity‐Based Anorexia

Olaia Carrera1, Ángela Fraga1, Ricardo Pellón2, Emilio Gutiérrez3

1 Unidade Venres Clinicos, Universidad de Santiago de Compostela, Galicia, 2 Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, 3 Departamento de Psicología Clínica y Psicobiología, Universidad de Santiago de Compostela, Galicia
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 9.47
DOI:  10.1002/0471142301.ns0947s67
Online Posting Date:  April, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Activity‐based anorexia (ABA) consists of a procedure that involves the simultaneous exposure of animals to a restricted feeding schedule, while free access is allowed to an activity wheel. Under these conditions, animals show a progressive increase in wheel running, a reduced efficiency in food intake to compensate for their increased activity, and a severe progression of weight loss. Due to the parallelism with the clinical manifestations of anorexia nervosa including increased activity, reduced food intake and severe weight loss, the ABA procedure has been proposed as the best analog of human anorexia nervosa (AN). Thus, ABA research could both allow a better understanding of the mechanisms underlying AN and generate useful leads for treatment development in AN. Curr. Protoc. Neurosci. 67:9.47.1‐9.47.11. © 2014 by John Wiley & Sons, Inc.

Keywords: activity‐based anorexia; physical activity; food restriction; self‐starvation; anorexia nervosa

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1:

  Materials
  • Male Sprague‐Dawley or Wistar rats, 160 to 180 g (minimum of 16)
  • Rat chow pellets (Harlan Teklad, cat. no. 2018S, or equivalent)
  • Room with control of ambient temperature and relative humidity [ambient temperature should be checked daily and temperature readings should be recorded in the experiment logbook; ambient temperature is a key parameter in ABA research (see Critical Parameters)]
  • Polycarbonate cages of the same dimensions depending on the wheel/cage set (48 × 28 × 20 or 28 × 28 × 14–cm) with mesh lids in which food can be placed and a water bottle inserted (all cages are lined with wood shavings)
  • Water bottles with rubber stoppers commonly used in animal husbandry
  • Identification tags for cages and running wheels
  • Top‐loading balance
  • Wahman‐type activity wheels (1.12‐m circumference and 10‐cm wide running surface of 10‐mm wire mesh bounded by clear Plexiglas walls) used to observe running activity
  • Computer and spreadsheet software
NOTE: We purchase the wheels from a Spanish company, Panlab, that imports them from Allentown (http://www.allentowninc.com). As depicted in Figure , there are different assemblages of wheels with the living chamber. Either the wheel is mounted in the living chamber (polycarbonate cage 48 × 28 × 20–cm), or the wheel is attached to a cage (acrylic 28 × 28 × 14–cm) provided with a sliding door to allow communication between the running wheel and the cage.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  American Psychiatric Association. 1994. Diagnostic and Statistical Manual of Mental Disorders, 4th. ed. Washington, D.C.
  Boakes, R.A. 2007. Self‐starvation in the rat: Running vs. eating. Span. J. Psychol. 10:251‐257.
  Boakes, R.A. and Dwyer, D.M. 1997. Weight loss in rats produced by running: Effects of prior experience and individual housing. Q. J. Exp. Psychol. 50:129‐148.
  Broocks, A., Liu, J., and Pirke, K.M. 1990. Semistarvation‐induced hyperactivity compensates for decreased norepinephrine and dopamine turnover in the mediobasal hypothalamus of the rat. J. Neural Transm. 79:113‐124.
  Brown, A.J., Avena, N.H., and Hoebel, B.G. 2008. High‐fat diet prevents and reverses the development of activity‐based anorexia in rats. Int. J. Eat. Disord. 41:383‐389.
  Carrera, O., Gutiérrez, E., and Boakes, R.A. 2006. Handling effects on later vulnerability to activity‐based anorexia. Dev. Psychobiol. 48:520‐527.
  Carrera, O., Cerrato, M., Sánchez, A., and Gutiérrez, E. 2009. Long maternal separation has protective effects in rats exposed to activity‐based anorexia. Dev. Psychobiol. 51:616‐624.
  Carrera, O., Cerrato, M., Vazquez, R., Sineiro, C., and Gutiérrez, E. 2011. Gender dimorphic effects of voluntary running in laboratory rats depends on maturational status. Q. J. Exp. Psychol. 64:823‐832.
  Carrera, O., Adan, R.A.H., Gutiérrez, E., Danner, U., Hoek, H., Van Elburg, A.A., and Kas, M.J. 2012. Hyperactivity in anorexia nervosa: Warming up not just burning‐off calories. PLoS One 7:e41851.
  Casper, R.C. 1998. Behavioral activation and lack of concern, core symptoms of anorexia nervosa. Int. J. Eat. Disord. 24:381‐393.
  Cerrato, M., Carrera, O., Vazquez, R., Echevarría, E., and Gutiérrez, E. 2012. Heat makes a difference in activity‐based anorexia: A translational approach to treatment development in anorexia nervosa. Int. J. Eat. Disord. 45:26‐35.
  Doerries, L.E., Stanley, E.Z., and Aravich, P.F. 1991. Activity‐based anorexia: Relationship to gender and activity‐stress ulcers. Physiol. Behav. 50:945‐949.
  Dwyer, D.M. and Boakes, R.A. 1997. Activity‐based anorexia in rats as a failure to adapt to a feeding schedule. Behav. Neurosci. 111:195‐205.
  Epling, W.F. and Pierce, W.D. 1988. Activity‐based anorexia: A biobehavioral perspective. Int. J. Eat. Disord. 7:475‐485.
  Epling, W.F., and Pierce, W.D. 1991. Solving the Anorexia Puzzle. A Scientific Approach. Hogrefe and Huber, Toronto.
  Epling W.F., Pierce W.D., and Stefan, L.A. 1981. Schedule‐induced selfstarvation. In Quantification of Steady‐State Operant Behaviour (C.M. Bradshaw, E. Szabadi, and C.F. Lowe, eds.) pp. 393‐396. Elsevier/North Holland Biomedical Press, Amsterdam.
  Epling, W.F., Pierce, W.D., and Stefan, L.A. 1983. A theory of activity‐based anorexia. Int. J. Eat. Disord. 3:27‐46.
  Exner, C., Hebebrand, J., Remschmidt, H., Wewetzer, C., Ziegler, A., Herpertz, S., Schweiger, U., Blum, W.F., Preibisch, G., Heldmaier, G., and Klingenspor, M. 2000. Leptin suppresses semi‐starvation induced hyperactivity in rats: Implications for anorexia nervosa. Mol. Psychiatr. 5:476‐481.
  Gelegen, C., Collier, D.A., Campbell, I.C., Oppelaar, H., and Kas, M.J. 2006. Behavioral, physiological, and molecular differences in response to dietary restriction in three inbred mouse strains. Am. J. Physiol. Endocrinol. Metab. 291:E574‐E581.
  Gelegen, C., Collier, D.A., Campbell, I.C., Oppelaar, H., van den Heuvel, J., Adan, R.A., and Kas, M.J. 2007. Difference in susceptibility to activity‐based anorexia in two inbred strains of mice. Eur. Neuropsychopharmacol. 17:199‐205.
  Gelegen, C., van den, H.J., Collier, D.A., Campbell, I.C., Oppelaar, H., Hessel, E., and Kas, M.J. 2008. Dopaminergic and brain‐derived neurotrophic factor signalling in inbred mice exposed to a restricted feeding schedule. Genes Brain Behav. 7:552‐559.
  Glavin, G.B. and Paré, W.P. 1985. Early weaning predisposes rats to exacerbated activity‐stress ulcer formation. Physiol. Behav. 34:907‐909.
  Fraga, A., De Pedro, B., Cerrato, M., Carrera, O., and Gutiérrez, E. 2012. Effect of auditory isolation on activity‐based anorexia. Psicothema 24:416‐421.
  Gutiérrez, E. 2013. A rat in the labyrinth of anorexia nervosa: Contributions of the activity‐based anorexia rodent model to the understanding of anorexia nervosa. Int. J. Eat. Disord. 46:289‐301.
  Gutiérrez, E., Vázquez, R., and Boakes, R.A. 2002. Activity‐based anorexia: Ambient temperature has been a neglected factor. Psychon. Bull. Rev. 9:239‐249.
  Gutiérrez, E., Baysari, M., Carrera, O., Whitford, T., and Boakes, R.A. 2006. Ambient temperature and body‐weight loss in the activity‐based anorexia procedure. Q. J. Exp. Psychol. 59:1196‐1211.
  Gutiérrez, E., Cerrato, M., Carrera, O. and Vazquez, R. 2008. Heat reversal of activity‐based anorexia: Implications for the treatment of anorexia nervosa. Int. J. Eat. Disord. 41:594‐601.
  Gutiérrez, E., Churruca, I., Zarate, J., Carrera, O., Portillo, M.P., Cerrato, M., Vazquez, R., and Echevarría, E. 2009. High ambient temperatura reverses hypothalamic MC4 receptor overexpression in an animal model of anorexia nervosa. Psychoneuroendocrinology 34:420‐429.
  Hall, R.C.W. and Beresford, T.P. 1989. Medical complications of anorexia and bulimia. Psychiatr. Med. 7:165‐192.
  Hancock, S. and Grant, V. 2009. Early maternal separation increases symptoms of activity‐based anorexia in male and female rats. J. Exp. Psychol. Anim. Behav. Process. 35:394‐406.
  Hebebrand, J., Exner, C., Hebebrand, K., Holtkamp, C., Casper, R.C., Remschmidt, H., Herpertz‐Dahlmann, B., and Klingenspor, M. 2003. Hyperactivity in patients with anorexia nervosa and in semistarved rats: Evidence for a pivotal role of hypoleptinemia. Physiol. Behav. 6957:1‐13.
  Klenotich, S.J. and Dulawa, S.C. 2012. The activity‐based anorexia mouse model. Methods Mol. Biol. 829:377‐393.
  Klenotich, S.J., Seiglie, M.P., McMurray, M.S., Roitman, J.D., Le Grange, D., Dugad, P., and Dulawa, S.C. 2012. Olanzapine, but not fluoxetine, treatment increases survival in activity‐based anorexia in mice. Neuropsychopharmacology 37:1620‐1631.
  Lambert, K.G. and Peacock, L.J. 1989. Feeding regime affects activity‐stress ulcer production. Physiol. Behav. 48:743‐746.
  Lewis, D.Y. and Brett, R.R. 2010. Activity‐based anorexia in C57/BL6 mice: Effects of the phytocannabinoid, Δ9‐tetrahydrocannabinol (THC) and the anandamide analogue, OMDM‐2. Eur. Neuropsychopharmacol. 20:622‐631.
  Mondon, D.E., Dolkas, C.B., Sims, C., and Reaven, G.M. 1985. Spontaneous running activity in male rats: Effect of age. J. App. Physiol. 58:1553‐1557.
  Paré, W.P. 1975. The influence of food consumption and running activity on the activity‐stress ulcer in the rat. Digest. Dis . 20:262‐273.
  Paré, W.P. 1977. Body temperature and the activity‐stress ulcer in the rat. Physiol. Behav. 18:219‐223.
  Paré, W.P. 1986. Prior stress and susceptibility to stress ulcer. Physiol. Behav. 36:1155‐1159.
  Paré, W.P. and Vincent, G.P. 1989. Environmental enrichment, running behavior and A‐S ulcer in the rat. Med. Sci. Res . 17:35‐36.
  Pérez‐Padilla, A., Magalhães, P., and Pellón, R. 2010. The effects of food presentation at regular or irregular times on the development of activity‐based anorexia in rats. Behav. Process. 84:541‐545.
  Pierce, W.D., Epling, W.F., and Boer, D.P. 1986. Deprivation and satiation: The interrelations between food and wheel running. J. Exp. Anal. Behav. 46:199‐210.
  Rikke, B.A., Yerg, J.E. 3rd, Battaglia, M.E., Nagy, T.R., Allison, D.B., and Johnson, T.E. 2003. Strain variation in the response of body temperature to dietary restriction. Mech. Ageing Dev. 124:663‐678.
  Routtenberg, A. and Kuznesof, A. 1967. Self‐starvation of rats living in activity wheels on a restricted feeding schedule. J. Comp. Physiol. Psychol. 64:414‐421.
  Vidal, P., Pérez‐Padilla, Á., and Pellón, R. 2013. Rapid development of semistarvation‐induced hyperactivity in Dark Agouti rats. Excessive wheel running and effect of 3,4‐methylenedioxymethamphetamine (MDMA). Appetite 61:30‐35.
  Vincent, G.P. and Paré, W. 1976. Activity‐stress ulcer in the rat, hamster, gerbil and guinea pig. Physiol. Behav. 16:557‐560.
  Vincent, G.P., Paré, W.P., Isom, K.E., and Reeves, J.M. 1977. Activity‐stress gastric lesions in the chipmunk (Tamias striatus). Physiol. Psychol. 5:449‐452.
  Watanabe, K., Hara, C., and Ogawa, N. 1990. Relationship between running activity rhythm and the development of activity‐stress ulcer in rats. Jap. J. Pharmacol. 52:421‐429.
  Watanabe, K., Hara, C., and Ogawa, N. 1992. Feeding conditions and estrous cycle of female rats under the A‐S stress procedure from aspects of anorexia nervosa. Physiol. Behav. 51:827‐832.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library