The 3‐NP Model of Striatal Neurodegeneration

Emmanuel Brouillet1

1 Neurodegenerative Diseases Laboratory, URA2210, CEA, and CNRS, Molecular Imaging Research Center (MIRCen), I2BM, Life Science Division, Fontenay‐aux‐Roses
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 9.48
DOI:  10.1002/0471142301.ns0948s67
Online Posting Date:  April, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The mitochondrial toxin 3‐nitropropionic acid (3‐NP) is an irreversible inhibitor of respiratory chain complex II. Chronic systemic administration of 3‐NP to mice, rats, and non‐human primates leads to preferential degeneration of the striatum, and produces motor and cognitive symptoms that are highly reminiscent of Huntington's disease (HD). HD is caused by a dominant inherited expansion of CAG repeats in the Huntington gene. Thus, many aspects of HD cannot be mimicked by 3‐NP. However, recent research shows that mitochondrial defects and oxidative stress may play a key role in HD pathogenesis, further supporting the potential utility of the 3‐NP model of striatal degeneration. First, a basic protocol to produce acute striatal lesions in rats using repeated intraperitoneal injection of 3‐NP is described. Second, a more complex protocol that takes advantage of the use of osmotic minipumps to steadily release 3‐NP leading to consistent lesions and motor symptoms in Lewis rats is presented. Curr. Protoc. Neurosci. 67:9.48.1‐9.48.14. © 2014 by John Wiley & Sons, Inc.

Keywords: mitochondria; striatum; Huntington's disease; neurodegeneration; chronic administration

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Repeated Injections of 3‐NP
  • Basic Protocol 2: Steady Subcutaneous Delivery of 3‐NP Using Osmotic Pumps
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Repeated Injections of 3‐NP

  • 3‐Nitropropionic acid (3‐NP, 99% pure; Sigma, Aldrich, and Fluka; see recipe)
  • Sprague‐Dawley rats (male, 12‐weeks‐old on the day of injection)
  • Animal balance
  • 1‐ml syringes and 25‐G needles

Basic Protocol 2: Steady Subcutaneous Delivery of 3‐NP Using Osmotic Pumps

  • Lewis rats (male, 12 weeks old on the day of implantation; Charles River)
  • 3‐Nitropropionic acid (3‐NP, 99% pure; see recipe)
  • Anesthetic: ketamine (75 mg/kg)/xylazine (10 mg/kg) or gaseous anesthesia (O 2 and 2% isoflurane)
  • Disinfectant (70% ethanol or iodide solution)
  • Isoflurane
  • Animal balance
  • 5‐ml transparent tubes (e.g., hemolysis tubes)
  • 3‐ or 5‐ml syringes
  • 2ML1 Alzet minipumps and kit containing:
    • Pumps (white part)
    • Flow regulators (thin metal tubing with a round plastic tip)
    • Blunt needle
  • Animal shaver
  • Surgical scissors, scissors with round tips
  • 7.5‐mm surgical wound clips
  • 30°C animal heating box
  • Wound clip remover
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Beal, M.F. 2005. Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol. 58:495‐505.
  Beal, M.F., Brouillet, E., Jenkins, B.G., Ferrante, R.J., Kowall, N.W., Miller, J.M., Storey, E., Srivastava, R., Rosen, B.R., and Hyman, B.T. 1993. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3‐nitropropionic acid. J. Neurosci. 13:4181‐4192.
  Benchoua, A., Trioulier, Y., Zala, D., Gaillard, M.C., Lefort, N., Dufour, N., Saudou, F., Elalouf, J.M., Hirsch, E., Hantraye, P., Deglon, N., and Brouillet, E. 2006. Involvement of mitochondrial complex II defects in neuronal death produced by N‐terminus fragment of mutated huntingtin. Mol. Biol. Cell 17:1652‐1663.
  Bizat, N., Hermel, J.M., Boyer, F., Jacquard, C., Creminon, C., Ouary, S., Escartin, C., Hantraye, P., Kajewski, S., and Brouillet, E. 2003. Calpain is a major cell death effector in selective striatal degeneration induced in vivo by 3‐nitropropionate: Implications for Huntington's disease. J. Neurosci. 23:5020‐5030.
  Blum, D., Galas, M.C., Pintor, A., Brouillet, E., Ledent, C., Muller, C.E., Bantubungi, K., Galluzzo, M., Gall, D., Cuvelier, L., Rolland, A.S., Popoli, P., and Schiffmann, S.N. 2003. A dual role of adenosine A2A receptors in 3‐nitropropionic acid–induced striatal lesions: Implications for the neuroprotective potential of A2A antagonists. J. Neurosci. 23:5361‐5369.
  Borrell‐Pages, M., Zala, D., Humbert, S., and Saudou, F. 2006. Huntington's disease: From huntingtin function and dysfunction to therapeutic strategies. Cell Mol. Life Sci. 63:2642‐2660.
  Brouillet, E., Jenkins, B.G., Hyman, B.T., Ferrante, R.J., Kowall, N.W., Srivastava, R., Roy, D.S., Rosen, B.R., and Beal, M.F. 1993. Age‐dependent vulnerability of the striatum to the mitochondrial toxin 3‐nitropropionic acid. J. Neurochem. 60:356‐359.
  Brouillet, E., Conde, F., Beal, M.F., and Hantraye, P. 1999. Replicating Huntington's disease phenotype in experimental animals. Prog. Neurobiol. 59:427‐468.
  Brouillet, E., Jacquard, C., Bizat, N., and Blum, D. 2005. 3‐Nitropropionic acid: A mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington's disease. J. Neurochem. 95:1521‐1540.
  Browne, S.E., Bowling, A.C., MacGarvey, U., Baik, M.J., Berger, S.C., Muqit, M.M., Bird, E.D., and Beal, M.F. 1997. Oxidative damage and metabolic dysfunction in Huntington's disease: Selective vulnerability of the basal ganglia. Ann. Neurol. 41:646‐653.
  Chaumeil, M.M., Valette, J., Baligand, C., Brouillet, E., Hantraye, P., Bloch, G., Gaura, V., Rialland, A., Krystkowiak, P., Verny, C., Damier, P., Remy, P., Bachoud‐Levi, A.C., Carlier, P., and Lebon, V. 2012. pH as a biomarker of neurodegeneration in Huntington's disease: A translational rodent‐human MRS study. J. Cereb. Blood Flow Metab. 32:771‐779.
  Cleren, C., Calingasan, N.Y., Starkov, A., Jacquard, C., Chen, J., Brouillet, E., and Beal, M.F. 2010. Promethazine protects against 3‐nitropropionic acid‐induced neurotoxicity. Neurochem. Int. 56:208‐212.
  Cui, L., Jeong, H., Borovecki, F., Parkhurst, C.N., Tanese, N., and Krainc, D. 2006. Transcriptional repression of PGC‐1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59‐69.
  Damiano, M., Galvan, L., Deglon, N., and Brouillet, E. 2010. Mitochondria in Huntington's disease. Biochim. Biophys. Acta 1802:52‐61.
  Damiano, M., Diguet, E., Malgorn, C., D'Aurelio, M., Galvan, L., Petit, F., Benhaim, L., Guillermier, M., Houitte, D., Dufour, N., Hantraye, P., Canals, J.M., Alberch, J., Delzescaux, T., Deglon, N., Beal, M.F., and Brouillet, E. 2013. A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N‐terminal fragments of mutant huntingtin. Hum. Mol. Genet. 22:3869‐3882.
  Gould, D.H., Wilson, M.P., and Hamar, D.W. 1985. Brain enzyme and clinical alterations induced in rats and mice by nitroaliphatic toxicants. Toxicol. Lett. 27:83‐89.
  Guyot, M.C., Hantraye, P., Dolan, R., Palfi, S., Maziere, M., and Brouillet, E. 1997. Quantifiable bradykinesia, gait abnormalities and Huntington's disease‐like striatal lesions in rats chronically treated with 3‐nitropropionic acid. Neuroscience 79:45‐56.
  Harper, P.S., ed. 1991. Huntington's disease. Saunders, London.
  He, F.S. 1987. [Extrapyramidal lesions caused by mildewed cane poisoning (with a report of 3 cases)]. Zhonghua Yi Xue Za Zhi 67:395‐396.
  Leventhal, L., Sortwell, C.E., Hanbury, R., Collier, T.J., Kordower, J.H., and Palfi, S. 2000. Cyclosporin A protects striatal neurons in vitro and in vivo from 3‐nitropropionic acid toxicity. J. Comp. Neurol. 425:471‐478.
  Ludolph, A.C., He, F., Spencer, P.S., Hammerstad, J., and Sabri, M. 1991. 3‐Nitropropionic acid‐exogenous animal neurotoxin and possible human striatal toxin. Can. J. Neurol. Sci. 18:492‐498.
  Mittoux, V., Ouary, S., Monville, C., Lisovoski, F., Poyot, T., Conde, F., Escartin, C., Robichon, R., Brouillet, E., Peschanski, M., and Hantraye, P. 2002. Corticostriatopallidal neuroprotection by adenovirus‐mediated ciliary neurotrophic factor gene transfer in a rat model of progressive striatal degeneration. J. Neurosci. 22:4478‐4486.
  Mochel, F. and Haller, R.G. 2011. Energy deficit in Huntington's disease: Why it matters. J. Clin. Invest. 121:493‐499.
  Myers, R.H., Vonsattel, J.P., Stevens, T.J., Cupples, L.A., Richardson, E.P., Martin, J.B., and Bird, E.D. 1988. Clinical and neuropathologic assessment of severity in Huntington's disease. Neurology 38:341‐347.
  Ouary, S., Bizat, N., Altairac, S., Menetrat, H., Mittoux, V., Conde, F., Hantraye, P., and Brouillet, E. 2000. Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3‐nitropropionic acid in rats: Implications for neuroprotection studies. Neuroscience 97:521‐530.
  Panov, A.V., Gutekunst, C.A., Leavitt, B.R., Hayden, M.R., Burke, J.R., Strittmatter, W.J., and Greenamyre, J.T. 2002. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat. Neurosci. 5:731‐736.
  Rosas, H.D., Koroshetz, W.J., Chen, Y.I., Skeuse, C., Vangel, M., Cudkowicz, M.E., Caplan, K., Marek, K., Seidman, L.J., Makris, N., Jenkins, B.G., and Goldstein, J.M. 2003. Evidence for more widespread cerebral pathology in early HD: An MRI‐based morphometric analysis. Neurology 60:1615‐1620.
  Song, W., Chen, J., Petrilli, A., Liot, G., Klinglmayr, E., Zhou, Y., Poquiz, P., Tjong, J., Pouladi, M.A., Hayden, M.R., Masliah, E., Ellisman, M., Rouiller, I., Schwarzenbacher, R., Bossy, B., Perkins, G., and Bossy‐Wetzel, E. 2011. Mutant huntingtin binds the mitochondrial fission GTPase dynamin‐related protein‐1 and increases its enzymatic activity. Nat. Med. 17:377‐382.
  Tabrizi, S.J., Cleeter, M.W., Xuereb, J., Taanman, J.W., Cooper, J.M., and Schapira, A.H. 1999. Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann. Neurol. 45:25‐32.
  The‐Huntington's‐Disease‐Collaborative‐Research‐Group. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72:971‐983.
  Yang, L., Sugama, S., Mischak, R.P., Kiaei, M., Bizat, N., Brouillet, E., Joh, T.H., and Beal, M.F. 2004. A novel systemically active caspase inhibitor attenuates the toxicities of MPTP, malonate, and 3NP in vivo. Neurobiol. Dis. 17:250‐259.
PDF or HTML at Wiley Online Library