The Revised Neurobehavioral Severity Scale (NSS‐R) for Rodents

Angela M. Yarnell1, Erin S. Barry2, Andrea Mountney1, Deborah Shear1, Frank Tortella1, Neil E. Grunberg2

1 Walter Reed Army Institute of Research, Silver Spring, Maryland, 2 Uniformed Services University of the Health Sciences, Bethesda, Maryland
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 9.52
DOI:  10.1002/cpns.10
Online Posting Date:  April, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Motor and sensory deficits are common following traumatic brain injury (TBI). Although rodent models provide valuable insight into the biological and functional outcomes of TBI, the success of translational research is critically dependent upon proper selection of sensitive, reliable, and reproducible assessments. Published literature includes various observational scales designed to evaluate post‐injury functionality; however, the heterogeneity in TBI location, severity, and symptomology can complicate behavioral assessments. The importance of choosing behavioral outcomes that can be reliably and objectively quantified in an efficient manner is becoming increasingly important. The Revised Neurobehavioral Severity Scale (NSS‐R) is a continuous series of specific, sensitive, and standardized observational tests that evaluate balance, motor coordination, and sensorimotor reflexes in rodents. The tasks follow a specific order designed to minimize interference: balance, landing, tail raise, dragging, righting reflex, ear reflex, eye reflex, sound reflex, tail pinch, and hindpaw pinch. The NSS‐R has proven to be a reliable method differentiating brain‐injured rodents from non‐brain‐injured rodents across many brain injury models. © 2016 by John Wiley & Sons, Inc.

Keywords: traumatic brain injury; rat; neurobehavioral severity scale revised; NSS‐R

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Significance Statement
  • Basic Protocol 1: Revised Neurobehavioral Severity Scale (NSS‐R) for Rats
  • Alternate Protocol 1: Revised Neurobehavioral Severity Scale (mNSS‐R) for Mice
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Revised Neurobehavioral Severity Scale (NSS‐R) for Rats

  Materials
  • Rat of interest
  • 35% ethanol
  • 6 standard polycarbonate shoebox cages (42.5 cm × 20.5 cm × 20 cm) with no bedding or lid
  • 2 polycarbonate cages (46 cm × 36 cm × 20 cm) with no bedding or lid
  • Balance beam (2 cm wide × 100 cm long; typically plastic/polycarbonate with a smooth, no‐grip surface that is easily cleaned)
  • Score sheet
  • Cotton swabs (e.g., Q‐tips)

Alternate Protocol 1: Revised Neurobehavioral Severity Scale (mNSS‐R) for Mice

  Materials
  • Mouse of interest
  • 35% ethanol
  • 4 standard polycarbonate shoebox cages (42.5 cm × 20.5 cm × 20 cm) with no bedding or lid
  • 1 polycarbonate cages (46 cm × 36 cm × 20 cm) with no bedding or lid
  • Balance beam (1 cm wide × 100 cm long)
  • Score sheet
  • Cotton swabs (e.g., Q‐tips)
  • Forceps (blunt‐nose; 6 cm)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Cernak, I. 2005. Animal models of head trauma. NeuroRx, 2:410‐422. doi: 10.1602/neurorx.2.3.410.
  Chavko, M., Watanabe, T., Adeeb, S., Lankasky, J., Ahlers, S.T., and McCarron, R.M. 2011. Relationship between orientation to a blast and pressure wave propagation inside the rat brain. J. Neurosci. Methods, 195:61‐66. doi: 10.1016/j.jneumeth.2010.11.019.
  Cherian, L., Robertson, C.S., Contant, C.F., and Bryan, R.M. 1994. Lateral cortical impact injury in rats: Cerebrovascular effects of varying depth of cortical deformation and impact velocity. J. Neurotrauma 11:573‐585. doi: 10.1089/neu.1994.11.573.
  Cole, J.T., Yarnell, A.M., Kean, W.S., Gold, E., Lewis, B., Ren, M., McMullen, D.C., Jacobowitz, D., Pollard, H.B., O'Neill, J.T., Grunberg, N.E., Dalgard, C.L., Frank, J., and Watson, W.D. 2011. Craniotomy: True sham for traumatic brain injury, or a sham of a sham? J. Neurotrauma 28:359‐369. doi: 10.1089/neu.2010.1427.
  Defense and Veterans Brain Injury Center, 2015. DoD Numbers for Traumatic Brain Injury, retrieved from the Defense and Veterans Brain Injury Center website: http://dvbic.dcoe.mil/sites/default/files/2000‐2015‐Q1‐Q3‐DoD‐TBI‐Worldwide‐Totals_2015‐Q1‐Q3_2015‐12‐08.pdf.
  Dixon, C.E., Clifton, G.L., Lighthall, J.W., Yaghmai, A.A., and Hayes, R.L. 1991. A controlled cortical impact model of traumatic brain injury in the rat. J. Neurosci. Methods 39:253‐262. doi: 10.1016/0165‐0270(91)90104‐8.
  Faul, M., Xu, L., Wald, M.M., and Coronado, V.G. 2010. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta, Ga.
  Foda, M.A. and Marmarou, A. 1994. A new model of diffuse brain injury in rats. Part II: Morphological characterization. J. Neurosurg. 80:301‐313. doi: 10.3171/jns.1994.80.2.0301.
  Hamm, R. J. 2001. Neurobehavioral assessment of outcome following traumatic brain injury in rats: An evaluation of selected measures. J. Neurotrauma 18:1207‐1216. doi: 10.1089/089771501317095241.
  Leung, L. Y., Larimore, Z., Holmes, L., Cartagena, C., Mountney, A., Deng‐Bryant, Y., and Tortella, F. 2014. The WRAIR projectile concussive impact model of mild traumatic brain injury: Re‐design, testing and preclinical validation. Ann. Biomed. Eng. 42:1618‐1630. doi: 10.1007/s10439‐014‐1014‐8.
  Ling, G.S.F., Lee, E.Y., and Kalehua, A.N. 2004. Traumatic brain injury in the rat using the fluid‐ percussion model. Curr. Protoc. Neurosci. Unit 9.2.1:9.2.1‐9.2.11. doi: 10.1002/0471142301.ns0902s28.
  Long, J.B., Bentley, T.L., Wessner, K.A., Cerone, C., Sweeney, S., and Bauman, R.A. 2009. Blast overpressure in rats: Recreating a battlefield injury in the laboratory. J. Neurotrauma 26:827‐840. doi: 10.1089/neu.2008.0748.
  Mahmood, A., Lu, D., Wang, L., Li, Y., Lu, M., and Chopp, M. 2001. Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 49:1196‐1203.
  Marmarou, A., Foda, M.A., van den Brink, W., Campbell, J., Kita, H., and Demetriadou, K. 1994. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J. Neurosurg. 80:291‐300. doi: 10.3171/jns.1994.80.2.0291.
  Marti, M., Mela, F., Fantin, M., Zucchini, S., Brown, J.M., Witta, J., Di Benedetto, M., Buzas, B., Reinscheid, R.K., Salvadori, S., Guerrini, R., Romualdi, P., Candeletti, S., Simonato, M., Cox, B.M., and Morari, M. 2005. Blockade of nociceptin/orphanin FQ transmission attenuates symptoms and neurodegeneration associated with Parkinson's disease. J. Neurosurg. 25:9591‐9601.
  Sharma, P., Yan, A., Hu, X., Li, X., Barry, E.S., Grunberg, N.E., and Zhang, L. 2012. Mitochondrial targeted neuron focused genes in hippocampus of rats with traumatic brain injury. Int. J. Crit. Illn. Inj. Sci. 2:172‐179. doi: 10.4103/2229‐5151.100931.
  Sharma, A., Chandran, R., Barry, E.S., Bhomia, M., Hutchison, M.A., Balakathiresan, N.S., Grunberg, N.E., and Maheshwari, R.K. 2014. Identification of serum microRNA signatures for diagnosis of mild traumatic brain injury in a closed head injury model. PLoS One 9:e112019. doi: 10.1371/journal.pone.0112019.
  Shohami, E., Novikov, M., and Bass, R. 1995. Long‐term effect of HU‐211, a novel non‐competitive NMDA antagonist, on motor and memory functions after closed head injury in the rat. Brain Res. 674:55‐62. doi: 10.1016/0006‐8993(94)01433‐I.
  Turtzo, L.C., Budde, M.D., Gold, E.M., Lewis, B.K., Janes, L., Yarnell, A., and Frank, J.A. 2013. The evolution of traumatic brain injury in a rat focal contusion model. NMR Biomed. 26:468‐479. doi: 10.1002/nbm.2886.
  Verma, R., Grover, D., Xu, X., Lombardini, E., Barry, E., Cravedi, K., Grunberg, N.E., and Galdzicki, Z. 2012. Genome‐wide epigenetic and expression profiling of mouse brain impacted by single and repetitive TBI. Program No. 554.06 2012 Neuroscience Meeting Planner, Society for Neuroscience, New Orleans, La.
  Williams, A.J., Hartings, J.A., Lu, X.C.M., Rolli, M.L., Dave, J.R., and Tortella, F.C. 2005. Characterization of a new rat model of penetrating ballistic brain injury. J. Neurotrauma 22:313‐331. doi: 10.1089/neu.2005.22.313.
  Xing, G., Barry, E.S., Benford, B., Grunberg, N.E., Li, H., Watson, W.D., and Sharma, P. 2013. Impact of repeated stress on traumatic brain injury‐induced mitochondrial electron transport chain expression and behavioral responses in rats. Front. Neurol. 4:196. doi: 10.3389/fneur.2013.00196.
  Yarnell, A.M. 2012. A neurobehavioral phenotype of blast traumatic brain injury and psychological stress in male and female rats. Masters Thesis. Uniformed Services University, Bethesda, Md.
  Yarnell, A.M., Shaughness, M.C., Barry, E.S., Ahlers, S.T., McCarron, R.M., and Grunberg, N.E. 2013. Blast traumatic brain injury in the rat using a blast overpressure model. Curr. Protoc. Neurosci. Unit 9.41:9.41.1‐9.41.14. doi: 10.1002/0471142301.ns0941s62.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library