Controlled Cortical Impact in the Rat

Dana D. Dean1, Joseph A. Frank2, L. Christine Turtzo3

1 Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, 2 Frank Laboratory, National Institutes of Health, Clinical Center and National Institutes of Biomedical Imaging and Bioengineering, Bethesda, Maryland, 3 National Institute of Neurological Disease and Stroke, Bethesda, Maryland
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 9.62
DOI:  10.1002/cpns.37
Online Posting Date:  October, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Traumatic brain injury (TBI) is a major cause of death and disability world‐wide. Following initial injury, TBI patients can face long‐term disability in the form of cognitive, physical, and psychological deficits, depending on the severity and location of injury. This results in an economic burden in the United States estimated to be $60 billion due to health‐care costs and loss of productivity. TBI is a significant area of active research interest for both military and civilian medicine. Numerous pre‐clinical animal models of TBI are used to characterize the anatomical and physiological pathways involved and to evaluate therapeutic interventions. Due to its flexibility and scalability, controlled cortical impact (CCI) is one of the most commonly used preclinical TBI models. This unit provides a basic CCI protocol performed in the rat. © 2017 by John Wiley & Sons, Inc.

Keywords: cortical controlled impact; traumatic brain injury; rat

PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • Male and female Sprague‐Dawley rats (cat. no. RRID:RGD_737891) 8‐ to 10‐weeks old (this age range models young adult rats; other age ranges and strains may be used depending upon research goals)
  • Isoflurane (or other anesthetic as advised by site veterinarian/Animal Care and Use Committee)
  • Oxygen
  • Sterile ophthalmic ointment
  • 70% isopropyl alcohol in spray bottle
  • Betadine
  • Oster clip disinfectant/lubricant spray
  • Sterile saline in IV bag
  • Dental acrylic (methyl methacrylate skull fixture adhesive; alternative is using bone wax)
  • Analgesics (acetaminophen and/or buprenorphine)
  • Anesthesia induction chamber (11‐in. L × 5.75‐in. W × 7‐in. H)
  • Anesthesia machine/vaporizer
  • Fur clippers
  • Stereotactic frame and digital driver (Harvard Apparatus, cat. no. 72‐6036)
  • Sterile surgical drape for base of stereotaxic frame
  • Sterile cotton tip applicators
  • Animal temperature monitor/probe
  • Two heating pads: one for surgical area, one for post‐surgical recovery area (for our protocols, we use water‐based heating pads that were connected to circulating water baths adjusted to maintain a temperature of approximately 37°C)
  • Sterile surgical drapes to cover animals
  • Sterile drapes for surgical field
  • Container of gauze in 70% isopropyl alcohol
  • Extra light source for surgery area
  • Surgical instruments:
    • Disposable scalpel (#10)
    • Micro‐dissecting forceps
    • Micro‐dissecting scissors
    • Olsen‐Hegar needle holder scissor combination
  • 18‐G needles for saline rinse
  • 12‐ml syringes for saline rinse
  • Sterile dry gauze
  • Agricola micro‐dissecting retractor
  • CCI electromagnetic impactor (we used the Leica/ Benchmark model, which was an earlier model of the Leica Biosystems Impact One Stereotaxic Impactor for CCI; Leica, cat. no. 39463920)
  • Impactor tip (size, shape depends on study parameters)
  • Electric surgical drill
  • Drill bits (0.6 mm)
  • Sterile Surgifoam absorbable gelatin sponges (2 cm × 6 cm × 7 mm; Ethicon, cat. no. 1972)
  • Sutures (4‐0, Nylon, Monofilament, FS‐2, Reverse Cutting Needle, 18‐in.)
  • Adhesive tape
  • Clear recovery chamber
NOTE: It is recommended that a rolling container be used to organize all materials for transport and storage. This makes it easier to keep items in one location, protected from dust, well‐stocked, and available at all times. An open cart can be used to contain larger equipment if the surgical suite is a shared space that demands mobility of items. Simply cover equipment with plastic to prevent dust accumulation.
PDF or HTML at Wiley Online Library



Literature Cited

  Brody, D. L., MacDonald, C., Kessens, C. C., Yuede, C., Parsadanian, M., Spinner, M., … Bayly, P. V. (2007). Electromagnetic controlled cortical impact device for precise, graded experimental traumatic brain injury. Journal of Neurotrauma, 24(4), 657–673. doi: 10.1089/neu.2006.0011.
  Cole, J. T., Yarnell, A., Kean, W. S., Gold, E., Lewis, B., Ren, M., … Watson, W. D. (2011). Craniotomy: True sham for traumatic brain injury, or a sham of a sham? Journal of Neurotrauma, 28(3), 359–369. doi: 10.1089/neu.2010.1427.
  Dixon, C. E., Clifton, G. L., Lighthall, J. W., Yaghmai, A. A., & Hayes, R. L. (1991). A controlled cortical impact model of traumatic brain injury in the rat. Journal of Neuroscience Methods, 39(3), 253–262. doi: 10.1016/0165‐0270(91)90104‐8.
  Finkelstein, E. A., Corso, P. S., & Miller, T. R. (2006). Incidence and economic burden of injuries in the United States. Oxford: Oxford University Press.
  Glover, L. E., Tajiri, N., Lau, T., Kaneko, Y., van Loveren, H., & Borlongan, C. V. (2012). Immediate, but not delayed, microsurgical skull reconstruction exacerbates brain damage in experimental traumatic brain injury model. PLoS One, 7(3), e33646. doi: 10.1371/journal.pone.0033646.
  Gold, E. M., Su, D., López‐Velázquez, L., Haus, D. L., Perez, H., Lacuesta, G. A., … Cummings, B. J. (2013). Functional assessment of long‐term deficits in rodent models of traumatic brain injury. Regenerative Medicine, 8(4), 483–516. doi: 10.2217/rme.13.41.
  Kamens, H. M., & Crabbe, J. C. (2007). The parallel rod floor test: A measure of ataxia in mice. Nature Protocols, 2(2), 277–281. doi: 10.1038/nprot.2008/19.
  Lighthall, J. W. (1988). Controlled cortical impact: A new experimental brain injury model. Journal of Neurotrauma, 5(1), 1–15. doi: 10.1089/neu.1988.5.1.
  Longhi, L., Saatman, K. E., Raghupathi, R., Laurer, H. L., Lenzlinger, P. M., Riess, P., … McIntosh, T. K. (2001). A review and rationale for the use of genetically engineered animals in the study of traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 21(11), 1241–1258. doi: 10.1097/00004647‐200111000‐00001.
  Luh, C., Gierth, K., Timaru‐Kast, R., Engelhard, K., Werner, C., & Thal, S. C. (2011). Influence of a brief episode of anesthesia during the induction of experimental brain trauma on secondary brain damage and inflammation. PLoS One, 6(5), e19948. doi: 10.1371/journal.pone.0019948.
  Manley, G. T., Rosenthal, G., Lam, M., Morabito, D., Yan, D., Derugin, N., … Panter, S. S. (2006). Controlled cortical impact in swine: Pathophysiology and biomechanics. Journal of Neurotrauma, 23(2), 128–139. doi: 10.1089/neu.2006.23.128.
  Osier, N. D., Korpon, J. R., & Dixon, C. E. (2015). Controlled cortical impact model. In F. H. Kobeissy (Ed.), Brain neurotrauma: Molecular, neuropsychological, and rehabilitation aspects. Boca Raton, FL: CRC Press/Taylor & Francis.
  Smith, D. H., Soares, H. D., Pierce, J. S., Perlman, K. G., Saatman, K. E., Meaney, D. F., … McIntosh, T. K. (1995). A model of parasagittal controlled cortical impact in the mouse: Cognitive and histopathologic effects. Journal of Neurotrauma, 12(2), 169–178. doi: 10.1089/neu.1995.12.169.
  Statler, K. D., Alexander, H., Vagni, V., Dixon, C. E., Clark, R. S., Jenkins, L., & Kochanek, P. M. (2006). Comparison of seven anesthetic agents on outcome after experimental traumatic brain injury in adult, male rats. Journal of Neurotrauma, 23(1), 97–108. doi: 10.1089/neu.2006.23.97.
  Taylor, C. A., Bell, J. M., Breiding, M. J., & Xu, L. (2017). Traumatic brain injury‐related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR. Surveillance Summaries, 66(9), 1–16. doi: 10.15585/mmwr.ss6609a1.
  Turtzo, L. C., Budde, M. D., Gold, E. M., Lewis, B. K., Janes, L., Yarnell, A., … Frank, J.A. (2013). The evolution of traumatic brain injury in a rat focal contusion model. NMR Biomedicine, 26, 468‐479. doi: 10.1002/nbm.2886.
  Turtzo, L. C., Lescher, J., Janes, L., Dean, D. D., Budde, M. D., & Frank, J. A. (2014). Macrophagic and microglial responses after focal traumatic brain injury in the female rat. Journal of Neuroinflammation, 11, 82. doi: 10.1186/1742‐2094‐11‐82.
  Turtzo, L. C., Budde, M. D., Dean, D. D, Gold, E. M., Lewis, B. K., Janes, L., … Frank, J.A. (2015). Failure of intravenous or intracardiac delivery of mesenchymal stromal cells to improve outcomes after focal traumatic brain injury in the female rat. PLoS One, 10, e0126551. doi: 10.1371/journal.pone.0126551.
  Werner, C., & Engelhard, K. (2007). Pathophysiology of traumatic brain injury. British Journal of Anaesthesia, 99(1), 4–9. doi: 10.1093/bja/aem131.
  Xiong, Y., Mahmood, A., & Chopp, M. (2013). Animal models of traumatic brain injury. Nature Reviews Neuroscience, 14(2), 128–142. doi: 10.1038/nrn3407.
  Zhang, Y. P., Cai, J., Shields, L. B., Liu, N., Xu, X. M., & Shields, C. B. (2014). Traumatic brain injury using mouse models. Translational Stroke Research, 5(4), 454–471. doi: 10.1007/s12975‐014‐0327‐0.
Key References
  Osier, N. D., & Dixon, C. E. (2016). The controlled cortical impact model of experimental brain trauma: Overview, research applications, and protocol. Methods in Molecular Biology, 1462, 177–192. doi: 10.1007/978‐1‐4939‐3816‐2‐11.
  Contains complete protocol, examples of species, table to summarize injury parameters utilized in various species, and table to summarize electromagnetic and pneumatic devices. Discusses applications, limitations and future directions.
  Osier, N. D., & Dixon, C. E. (2016). The controlled cortical impact model: Applications, considerations for researchers, and future directions. Frontiers in Neurology, 7, 134. doi: 10.3389/fneur.2016.00134.
  Complete protocol, historical perspective, key features, research applications, and factors that can influence outcome and data quality are highlights included in this review article.
  Romine, J., Gao, X., & Chen, J. (2014). Controlled cortical impact model for traumatic brain injury. Journal of Visualized Experiments (90), e51781. doi: 10.3791/51781.
  Includes complete protocol for mouse CCI, images of craniotomy, impactor alignment, gross and histologic brain images, and a video posted online.
  Xiong, Y., Mahmood, A., & Chopp, M. (2013). Animal models of traumatic brain injury. Nature Reviews Neuroscience, 14(2), 128–142. doi: 10.1038/nrn3407.
  Describes animal models of TBI, lists limitations of models, suggests approaches to improve translation of results, and provides detailed diagram of models and tables that summarize the models and their pathologic features.
PDF or HTML at Wiley Online Library