Artificial Chromosomes in Rice (Oryza sativa)

Chunhui Xu1, Weichang Yu2

1 School of Life Sciences, Shandong University, Jinan, Shandong, 2 Shenzhen Research Institute of The Chinese University of Hong Kong, Shenzhen
Publication Name:  Current Protocols in Plant Biology
Unit Number:   
DOI:  10.1002/cppb.20008
Online Posting Date:  May, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Chromosomes are the carriers of genetic material in biological organisms. Each chromosome has three essential components: a centromere, telomeres, and origins of replication. The understanding of the essential structural and functional organization of chromosomes has made it possible to produce artificial chromosomes (ACs), which are human‐engineered minichromosomes. There are two approaches to make ACs: de novo assembly (bottom‐up) and truncation of existing chromosomes (top‐down). Rice (Oryza sativa) ACs are produced by telomere‐mediated chromosome truncation, and may have many applications, such as genetic engineering to stack and express multiple genes in rice to combat diseases caused by bacteria, fungi, and viruses, to enhance tolerance of rice to environmental stresses such as drought, heat, and salinity, and to improve yield and quality. © 2016 by John Wiley & Sons, Inc.

Keywords: artificial chromosome; genetic engineering; minichromosome; telomere truncation

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Telomere‐Mediated Chromosome Truncation of Rice
  • Support Protocol 1: Preparation of Gold Particles for Rice Transformation
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Telomere‐Mediated Chromosome Truncation of Rice

  Materials
  • Rice seeds
  • 70% (v/v) ethanol
  • 50% (v/v) bleach, diluted from household bleach
  • Sterile water
  • Plates containing rice callus induction medium (see recipe)
  • Osmotic treatment plate (see recipe)
  • 0.6‐μm gold particles (Bio‐Rad)
  • Plasmid DNAs
  • 70% (v/v) isopropanol
  • Helium tank
  • Selection medium (see recipe)
  • 50 mg/ml hygromycin
  • Regeneration medium (see recipe)
  • Rooting medium (see recipe)
  • Yoshida medium (see recipe)
  • Soil
  • 100‐ml conical flasks
  • Rotary shaker
  • Sterile blotting papers
  • 28°C incubator
  • Gene gun (Bio‐Rad)
    • Macrocarriers
    • Rupture disks (650 psi)
    • Stopping screen (sterilized by autoclaving)
  • Clean hood
  • Sterile filter paper
  • Vortex
  • Vacuum pump
  • Growth chamber

Support Protocol 1: Preparation of Gold Particles for Rice Transformation

  Materials
  • 0.6‐μm gold particles
  • 100% ice‐cold ethanol, −20°C
  • ddH 2O, autoclaved, incubate on ice before use
  • 2.5 M CaCl 2, filter‐sterilized, 50‐μl volumes, and stored at −20°C
  • 0.1 M spermidine (Sigma), filter‐sterilized, 20‐μl volumes, and stored at −20°C
  • Plasmid DNAs (see protocol 1Basic Protocol)
  • 1.5‐ml sterile microcentrifuge tubes (siliconized to reduce adhesion of gold particles to walls)
  • Ultrasonic cleaner
  • Bench‐top microcentrifuge
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Birchler, J.A. 2015. Engineered minichromosomes in plants. Chromosome Res. 23:77‐85. doi: 10.1007/s10577‐014‐9454‐4.
  Borland, A.M., Hartwell, J., Weston, D.J., Schlauch, K.A., Tschaplinski, T.J., Tuskan, G.A., Yang, X., and Cushman, J.C. 2014. Engineering crassulacean acid metabolism to improve water‐use efficiency. Trends Plant Sci. 19:327‐338. doi: 10.1016/j.tplants.2014.01.006.
  Cheng, Z., Yan, H., Yu, H., Tang, S., Jiang, J., Gu, M., and Zhu, L. 2001. Development and applications of a complete set of rice telotrisomics. Genetics 157:361‐368.
  Chu, C.C., Wang, C.C., Sun, C.S., Hsu, C., Yin, K.C., Chu, C.Y., and Bi, F.I. 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18:659‐668.
  Farr, C.J., Stevanovic, M., Thomson, E.J., Goodfellow, P.N., and Cooke, H.J. 1992. Telomere‐associated chromosome fragmentation: Applications in genome manipulation and analysis. Nat. Genet. 2:275‐282. doi: 10.1038/ng1292‐275.
  Gaeta, R.T., Masonbrink, R.E., Zhao, C., Sanyal, A., Krishnaswamy, L., and Birchler, J.A. 2015. In vivo modification of a maize engineered minichromosome. Chromosoma 122:221‐232. doi: 10.1007/s00412‐013‐0403‐3.
  Harrington, J.J., Van Bokkelen, G., Mays, R.W., Gustashaw, K., and Willard, H.F. 1997. Formation of de novo centromeres and construction of first‐generation human artificial microchromosomes. Nat. Genet. 15:345‐355. doi: 10.1038/ng0497‐345.
  Kapusi, E., Ma, L., Teo, C.H., Hensel, G., Himmelbach, A., Schubert, I., Mette, M.F., Kumlehn, J., and Houben, A. 2012. Telomere‐mediated truncation of barley chromosomes. Chromosoma 121:181‐190. doi: 10.1007/s00412‐011‐0351‐8.
  Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15:473‐497. doi: 10.1111/j.1399‐3054.1962.tb08052.x.
  Nelson, A.D., Lamb, J.C., Kobrossly, P.S., and Shippen, D.E. 2011. Parameters affecting telomere‐mediated chromosomal truncation in Arabidopsis. Plant Cell 23:2263‐2272. doi: 10.1105/tpc.111.086017.
  Richards, E.J. and Ausubel, F.M. 1988. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127‐136. doi: 10.1016/0092‐8674(88)90494‐1.
  Sanford, J.C., Smith, F.D., and Russell, J.A. 1993. Optimizing the biolistic process for different biological applications. Methods Enzymol. 217:483‐509. doi: 10.1016/0076‐6879(93)17086‐K.
  Teo, C.H., Ma, L., Kapusi, E., Hensel, G., Kumlehn, J., Schubert, I., Houben, A., and Mette, M.F. 2011. Induction of telomere‐mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana. Plant J. 68:28‐39. doi: 10.1111/j.1365‐313X.2011.04662.x.
  Vega, J.M., Yu, W., Han, F., Kato, A., Peters, E.M., Zhang, Z.J., and Birchler, J.A. 2008. Agrobacterium‐mediated transformation of maize (Zea mays) with Cre‐lox site specific recombination cassettes in BIBAC vectors. Plant Mol. Biol. 66:587‐598. doi: 10.1007/s11103‐007‐9276‐2.
  Wang, K. and Yu, W. 2016. In situ hybridization in rice (Oryza sativa). Curr. Protoc. Plant Biol. 1:89‐106. doi: 10.1002/cppb.20007.
  Xu, C., Cheng, Z., and Yu, W. 2012. Construction of rice mini‐chromosomes by telomere‐mediated chromosomal truncation. Plant J. 70:1070‐1079. doi: 10.1111/j.1365‐313X.2012.04916.x.
  Yang, X., Li, J., Chen, L., Louzada, E.S., He, J., and Yu, W. 2015. Stable mitotic inheritance of rice minichromosomes in cell suspension cultures. Plant Cell Rep. 34:929‐941. doi: 10.1007/s00299‐015‐1755‐3.
  Yoshida, S., Forno, D.A., Cook, J.H., and Gomez, K.A. 1976. Routine procedure for growing rice plants in culture solution. In Laboratory Manual for Physiological Studies of Rice. pp. 61‐66. International Rice Research Institute, Los Baños, Philippines.
  Yu, W., Lamb, J.C., Han, F., and Birchler, J.A. 2006. Telomere‐mediated chromosomal truncation in maize. Proc. Natl. Acad. Sci. U.S.A. 103:17331‐17336. doi: 10.1073/pnas.0605750103.
  Yu, W., Han, F., Gao, Z., Vega, J.M., and Birchler, J.A. 2007. Construction and behavior of engineered minichromosomes in maize. Proc. Natl. Acad. Sci. U.S.A. 104:8924‐8929. doi: 10.1073/pnas.0700932104.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library