Purification of Translating Ribosomes and Associated mRNAs from Soybean (Glycine max)

Norma A. Castro‐Guerrero1, Yaya Cui1, David G. Mendoza‐Cozatl1

1 Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
Publication Name:  Current Protocols in Plant Biology
Unit Number:   
DOI:  10.1002/cppb.20011
Online Posting Date:  May, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Cell identity and function are largely determined by specific gene expression patterns and ultimately by the proteome. Current high‐throughput sequencing technologies offer the possibility of quantifying gene expression at high resolution, with minimum input and without the constraints of array‐based systems, such as the need for specific probes. In addition, techniques are now available to capture genes that are actively being translated. These techniques use either density gradients or epitope‐based immunoprecipitation to purify translating ribosomes and associated mRNAs (i.e., translatomes). More recently, the combination of tissue‐specific promoters driving epitope‐tagged ribosomes with high‐throughput sequencing has allowed the identification of genes and networks unique to specific cell types. Translatome analyses have the potential to unravel genetic programs and cellular responses to environmental stresses at cell‐specific resolution. This unit describes steps for the use of epitope‐based immunoprecipitation to purify translating ribosomes from soybean and the recovery of mRNA for downstream applications such as gene expression analysis. © 2016 by John Wiley & Sons, Inc.

Keywords: monosomes; polysomes; Ribo‐Seq; ribosome immunoprecipitation; TRAP; translatome

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Immunopurification of Translating Ribosomes
  • Alternate Protocol 1: Immunopurification of FLAG‐Tagged Ribosomes Using Anti‐FLAG Magnetic Beads
  • Alternate Protocol 2: RNA Recovery Using Chaotropic Agents
  • Reagents and Solutions
  • Commentary
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Immunopurification of Translating Ribosomes

  Materials
  • Frozen plant tissue
  • Liquid nitrogen
  • Extraction buffer (see recipe), ice cold
  • EZ‐View anti‐FLAG agarose beads (50% slurry, Sigma‐Aldrich, cat. no. F2426‐1ML)
  • Wash buffer (see recipe), ice cold
  • Elution buffer (see recipe)
  • Trizol (ThermoFisher, cat. no. 15596018)
  • Chloroform
  • Ethanol, molecular biology grade
  • Mortar and pestle (per sample)
  • 1.5‐ml microcentrifuge tubes
  • 15‐ and 50‐ml polypropylene tubes
  • Standard rocking shaker (Labquake or similar)
  • 50‐ml round‐bottom polycarbonate centrifuge tubes
  • Sterile cheesecloth or 25‐ml syringe with fiberglass
  • Column‐based RNA isolation kit (Qiagen RNeasy Mini Kit or similar)
  • Nanodrop or other spectrophotometer
NOTE: Until elution from FLAG‐beads, all solutions, glassware, centrifuge tubes, and equipment should be pre‐cooled to 4°C. Samples should be kept on ice and incubations performed at 4°C. All solutions and reagents should be maintained free of RNases.

Alternate Protocol 1: Immunopurification of FLAG‐Tagged Ribosomes Using Anti‐FLAG Magnetic Beads

  Materials
  • 8 M guanidine hydrochloride
  • Ethanol, molecular biology grade
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Arava, Y., Wang, Y., Storey, J.D., Liu, C.L., Brown, P.O., and Herschlag, D. 2003. Genome‐wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 100:3889‐3894. doi: 10.1073/pnas.0635171100.
  Graham, T.L., Graham, M.Y., Subramanian, S., and Yu, O. 2007. RNAi silencing of genes for elicitation or biosynthesis of 5‐deoxyisoflavonoids suppresses race‐specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol. 144:728‐740. doi: 10.1104/pp.107.097865.
  Gygi, S.P., Rochon, Y., Franza, B.R., and Aebersold, R. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 19:1720‐1730. doi: 10.1128/MCB.19.3.1720.
  Heiman, M., Kulicke, R., Fenster, R.J., Greengard, P., and Heintz, N. 2014. Cell type‐specific mRNA purification by translating ribosome affinity purification (TRAP). Nat. Protoc. 9:1282‐1291. doi: 10.1038/nprot.2014.085.
  Kawaguchi, R. and Bailey‐Serres, J. 2002. Regulation of translational initiation in plants. Curr. Opin. Plant Biol. 5:460‐465. doi: 10.1016/S1369‐5266(02)00290‐X.
  Mackey, D., Holt, B.F., Wiig, A., and Dangl, J.L. 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1‐mediated resistance in Arabidopsis. Cell 108:743‐754. doi: 10.1016/S0092‐8674(02)00661‐X.
  Reynoso, M.A., Blanco, F.A., Bailey‐Serres, J., Crespi, M., and Zanetti, M.E. 2013. Selective recruitment of mRNAs and miRNAs to polyribosomes in response to rhizobia infection in Medicago truncatula. Plant J. 73:289‐301. doi: 10.1111/tpj.12033.
  Tack, D.C., Pitchers, W.R., and Adams, K.L. 2014. Transcriptome analysis indicates considerable divergence in alternative splicing between duplicated genes in Arabidopsis thaliana. Genetics 198:1473‐1481. doi: 10.1534/genetics.114.169466.
  Taylor‐Teeples, M., Lin, L., de Lucas, M., Turco, G., Toal, T.W., Gaudinier, A., Young, N.F., Trabucco, G.M., Veling, M.T., Lamothe, R., Handakumbura, P.P., Xiong, G., Wang, C., Corwin, J., Tsoukalas, A., Zhang, L., Ware, D., Pauly, M., Kliebenstein, D.J., Dehesh, K., Tagkopoulos, I., Breton, G., Pruneda‐Paz, J.L., Ahnert, S.E., Kay, S.A., Hazen, S.P., and Brady, S.M. 2015. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571‐575. doi: 10.1038/nature14099.
  Toth, K., Batek, J., and Stacey, G. 2016. Generation of soybean (Glycine max) transient transgenic roots. Curr. Protoc. Plant Biol. 1:1‐13.
  Vragović, K., Sela, A., Friedlander‐Shani, L., Fridman, Y., Hacham, Y., Holland, N., Bartom, E., Mockler, T.C., and Savaldi‐Goldstein, S. 2015. Translatome analyses capture of opposing tissue‐specific brassinosteroid signals orchestrating root meristem differentiation. Proc. Natl. Acad. Sci. U.S.A. 112:923‐928. doi: 10.1073/pnas.1417947112.
  Zanetti, M.E., Chang, I.F., Gong, F., Galbraith, D.W., and Bailey‐Serres, J. 2005. Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol. 138:624‐35.
Key Reference
  Zanetti et al., 2005. See above.
  This manuscript makes a thorough comparison between polysome purification by density gradients and tag‐based immunoprecipitation protocols in Arabidopsis. In addition, use of different FLAG‐tagged ribosomal subunits demonstrates that RPL18 is the ideal subunit for use in TRAP techniques. Any researcher interested in TRAP should read this manuscript to understand the rationale and biochemistry behind the development of this technique.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library