Soybean (Glycine max) Mutant and Germplasm Resources: Current Status and Future Prospects

Benjamin W. Campbell1, Robert M. Stupar1

1 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota
Publication Name:  Current Protocols in Plant Biology
Unit Number:   
DOI:  10.1002/cppb.20015
Online Posting Date:  June, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Genetic bottlenecks during domestication and modern breeding limited the genetic diversity of soybean (Glycine max (L.) Merr.). Therefore, expanding and diversifying soybean genetic resources is a major priority for the research community. These resources, consisting of natural and induced genetic variants, are valuable tools for improving soybean and furthering soybean biological knowledge. During the twentieth century, researchers gathered a wealth of genetic variation in the forms of landraces, Glycine soja accessions, Glycine tertiary germplasm, and the U.S. Department of Agriculture (USDA) Type and Isoline Collections. During the twenty‐first century, soybean researchers have added several new genetic and genomic resources. These include the reference genome sequence, genotype data for the USDA soybean germplasm collection, next‐generation mapping populations, new irradiation and transposon‐based mutagenesis populations, and designer nuclease platforms for genome engineering. This paper briefly surveys the publicly accessible soybean genetic resources currently available or in development and provides recommendations for developing such genetic resources in the future. © 2016 by John Wiley & Sons, Inc.

Keywords: fast neutron; genetic resources; germplasm; mutant; soybean; transposon

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Community Accessible Soybean Mutant Resources
  • Best Practices and Recommendations for Developing Soybean Mutant Populations
  • Conclusions and Future Prospects
  • Acknowledgments
  • Conflict of Interest Statement
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Ainsworth, E.A., Rogers, A., Nelson, R., and Long, S.P. 2004. Testing the “source–sink” hypothesis of down‐regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agr. Forest Meteorol. 122:85‐94. doi: 10.1016/j.agrformet.2003.09.002.
  Akao, S., and Kouchi, H. 1992. A supernodulating mutant isolated from soybean cultivar Enrei. Soil Sci. Plant Nutr. 38:183‐187. doi: 10.1080/00380768.1992.10416966.
  Anai, T. 2012. Potential of a mutant‐based reverse genetic approach for functional genomics and molecular breeding in soybean. Breeding Sci. 61:462‐467. doi: 10.1270/jsbbs.61.462.
  Anai, T., Yamada, T., Hideshima, R., Kinoshita, T., Rahman, S.M., and Takagi, Y. 2008. Two high‐oleic‐acid soybean mutants, M23 and KK21, have disrupted microsomal omega‐6 fatty acid desaturase, encoded by GmFAD2‐1a. Breeding Sci. 58:447‐452. doi: 10.1270/jsbbs.58.447.
  Anderson, J.E., Kantar, M.B., Kono, T.Y., Fu, F., Stec, A.O., Song, Q., Cregan, P.B., Specht, J.E., Diers, B.W., Cannon, S.B., McHale, L.K., and Stupar, R.M. 2014. A roadmap for functional structural variants in the soybean genome. G3 (Bethesda) 4:1307‐1318. doi: 10.1534/g3.114.011551.
  Arase, S., Hase, Y., Abe, J., Kasai, M., Yamada, T., Kitamura, K., Narumi, I., Tanaka, A., and Kanazawa, A. 2011. Optimization of ion‐beam irradiation for mutagenesis in soybean: Effects on plant growth and production of visibly altered mutants. Plant Biotechnol. 28:323‐329. doi: 10.5511/plantbiotechnology.11.0111a.
  Atak, Ç., Alikamanoğlu, S., Açık, L., and Canbolat, Y. 2004. Induced of plastid mutations in soybean plant (Glycine max L. Merrill) with gamma radiation and determination with RAPD. Mutat. Res. 556:35‐44. doi: 10.1016/j.mrfmmm.2004.06.037.
  Bart, R.S., Chern, M., Vega‐Sánchez, M.E., Canlas, P., and Ronald, P.C. 2010. Rice Snl6, a cinnamoyl‐CoA reductase‐like gene family member, is required for NH1‐mediated immunity to Xanthomonas oryzae pv. oryzae. PLoS Genet. 6:e1001123. doi: 10.1371/journal.pgen.1001123.
  Behrens, M.R., Mutlu, N., Chakraborty, S., Dumitru, R., Jiang, W.Z., Lavallee, B.J., Herman, P.L., Clemente, T.E., and Weeks, D.P. 2007. Dicamba resistance: Enlarging and preserving biotechnology‐based weed management strategies. Science 316:1185‐1188. doi: 10.1126/science.1141596.
  Belfield, E.J., Gan, X., Mithani, A., Brown, C., Jiang, C., Franklin, K., Alvey, E., Wibowo, A., Jung, M., Bailey, K., Kalwani, S., Ragoussis, J., Mott, R., and Harberd, N.P. 2012. Genome‐wide analysis of mutations in mutant lineages selected following fast‐neutron irradiation mutagenesis of Arabidopsis thaliana. Genome Res. 22:1306‐1315. doi: 10.1101/gr.131474.111.
  Bernard, R.L. 1976. Soybean genetic type collection list. Soybean Genet. Newsl. 3:62‐67.
  Bernard, R.L., and Cremeens, C.R. 1988. Registration of ‘Williams 82’ soybean. Crop Sci. 28:1027‐1028. doi: 10.2135/cropsci1988.0011183X002800060049x.
  Bernard, R.L., Nelson, R.L., and Cremeens, C.R. 1991. USDA soybean genetic collection: Isoline collection. Soybean Genet. Newsl. 18:27‐57.
  Bolon, Y.T., Haun, W.J., Xu, W.W., Grant, D., Stacey, M.G., Nelson, R.T., Gerhardt, D.J., Jeddeloh, J.A., Stacey, G., Muehlbauer, G.J., Orf, J.H., Naeve, S.L., Stupar, R.M., and Vance, C.P. 2011. Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiol. 156:240‐253. doi: 10.1104/pp.110.170811.
  Bolon, Y.T., Stec, A.O., Michno, J.M., Roessler, J., Bhaskar, P.B., Ries, L., Dobbels, A.A., Campbell, B.W., Young, N.P., Anderson, J.E., Grant, D.M., Orf, J.H., Naeve, S.L., Muehlbauer, G.J., Vance, C.P., and Stupar, R.M. 2014. Genome resilience and prevalence of segmental duplications following fast neutron irradiation of soybean. Genetics 198:967‐981. doi: 10.1534/genetics.114.170340.
  Brink, K., Chui, C.‐F., Cressman, R.F., Garcia, P., Henderson, N., Hong, B., Maxwell, C.A., Meyer, K., Mickelson, J., Stecca, K.L., Tyree, C.W., Weber, N., Zeng, W., and Zhong, C.X. 2014. Molecular characterization, compositional analysis, and germination evaluation of a high‐oleic soybean generated by the suppression of FAD2‐1 expression. Crop Sci. 54:2160‐2174. doi: 10.2135/cropsci2012.06.0377.
  Brossman, G.D., and Wilcox, J.R. 1984. Induction of genetic variation for oil properties and agronomic characteristics of soybean. Crop Sci. 24:783‐787. doi: 10.2135/cropsci1984.0011183X002400040036x.
  Bubeck, D.M., Fehr, W.R., and Hammond, E.G. 1989. Inheritance of palmitic and stearic acid mutants of soybean. Crop Sci. 29:652‐656. doi: 10.2135/cropsci1989.0011183X002900030021x.
  Campbell, B.W., Mani, D., Curtin, S.J., Slattery, R.A., Michno, J.M., Ort, D.R., Schaus, P.J., Palmer, R.G., Orf, J.H., and Stupar, R.M. 2014. Identical substitutions in magnesium chelatase paralogs result in chlorophyll deficient soybean mutants. G3 (Bethesda) 5:123‐131. doi: 10.1534/g3.114.015255.
  Carpenter, J.A., and Fehr, W.R. 1986. Genetic variability for desirable agronomic traits in populations containing glycine soja germplasm. Crop Sci. 26:681‐686. doi: 10.2135/cropsci1986.0011183X002600040008x.
  Carrero‐Colón, M., Abshire, N., Sweeney, D., Gaskin, E., and Hudson, K. 2014. Mutations in SACPD‐C result in a range of elevated stearic acid concentration in soybean seed. PLoS One 9:e97891. doi: 10.1371/journal.pone.0097891.
  Carroll, B.J., McNeil, D.L., and Gresshoff, P.M. 1985a. A supernodulation and nitrate‐tolerant symbiotic (nts) soybean mutant. Plant Physiol. 78:34‐40. doi: 10.1104/pp.78.1.34.
  Carroll, B.J., McNeil, D.L., and Gresshoff, P.M. 1985b. Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc. Natl. Acad. Sci. U.S.A. 82:4162‐4166. doi: 10.1073/pnas.82.12.4162.
  Carroll, B.J., McNeil, D.L., and Gresshoff, P.M. 1986. Mutagenesis of soybean (Glycine max (L.) Merr.) and the isolation of non‐nodulating mutants. Plant Sci. 47:109‐114. doi: 10.1016/0168‐9452(86)90057‐9.
  Carter, T.E., Nelson, R., Sneller, C.H., and Cui, Z. 2004. Genetic diversity in soybean. In Soybeans: Improvement, Production and Uses, Third edition. (H.R. Boerma and J.E. Specht, eds.) pp. 303‐416. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wis.
  Chen, K., and Gao, C. 2014. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep. 33:575‐583. doi: 10.1007/s00299‐013‐1539‐6.
  Cober, E.R., Molnar, S.J., Charette, M., and Voldeng, H.D. 2010. A new locus for early maturity in soybean. Crop Sci. 50:524‐527. doi: 10.2135/cropsci2009.04.0174.
  Concibido, V.C., La Vallee, B., McLaird, P., Pineda, N., Meyer, J., Hummel, L., Yang, J., Wu, K., and Delannay, X. 2003. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor. Appl. Genet. 106:575‐582. doi: 10.1007/s00122‐002‐1071‐5.
  Concibido, V.C., Lange, D.A., Denny, R.L., Orf, J.H., and Young, N.D. 1997. Genome mapping of soybean cyst nematode resistance genes in ‘Peking’, PI 90763, and PI 88788 using DNA markers. Crop Sci. 37:258‐264. doi: 10.2135/cropsci1997.0011183X003700010046x.
  Cook, D.E., Lee, T.G., Guo, X., Melito, S., Wang, K., Bayless, A.M., Wang, J., Hughes, T.J., Willis, D.K., Clemente, T.E., Diers, B.W., Jiang, J., Hudson, M.E., and Bent, A.F. 2012. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206‐1209. doi: 10.1126/science.1228746.
  Cooper, J.L., Till, B.J., Laport, R.G., Darlow, M.C., Kleffner, J.M., Jamai, A., El‐Mellouki, T., Liu, S., Ritchie, R., Nielsen, N., Bilyeu, K.D., Meksem, K., Comai, L., and Henikoff, S. 2008. TILLING to detect induced mutations in soybean. BMC Plant Biol. 8:9. doi: 10.1186/1471‐2229‐8‐9.
  Courtial, B., Feuerbach, F., Eberhard, S., Rohmer, L., Chiapello, H., Camilleri, C., and Lucas, H. 2001. Tnt1 transposition events are induced by in vitro transformation of Arabidopsis thaliana, and transposed copies integrate into genes. Mol. Genet. Genomics 265:32‐42. doi: 10.1007/s004380000387.
  Cui, Y., Barampuram, S., Stacey, M.G., Hancock, C.N., Findley, S., Mathieu, M., Zhang, Z., Parrott, W.A., and Stacey, G. 2013. Tnt1 retrotransposon mutagenesis: A tool for soybean functional genomics. Plant Physiol. 161:36‐47. doi: 10.1104/pp.112.205369.
  Curtin, S.J., Michno, J.M., Campbell, B.W., Gil‐Humanes, J., Mathioni, S.M., Hammond, R., Gutierrez‐Gonzalez, J.J., Donohue, R.C., Kantar, M.B., Eamens, A.L., Meyers, B.C., Voytas, D.F., and Stupar, R.M. 2015. microRNA maturation and microRNA target gene expression regulation are severely disrupted in soybean dicer‐like1 double mutants. G3 (Bethesda) 6:423‐433. doi: 10.1534/g3.115.022137.
  Curtin, S.J., Zhang, F., Sander, J.D., Haun, W.J., Starker, C., Baltes, N.J., Reyon, D., Dahlborg, E.J., Goodwin, M.J., Coffman, A.P., Dobbs, D., Joung, J.K., Voytas, D.F., and Stupar, R.M. 2011. Targeted mutagenesis of duplicated genes in soybean with zinc‐finger nucleases. Plant Physiol. 156:466‐473. doi: 10.1104/pp.111.172981.
  d'Erfurth, I., Cosson, V., Eschstruth, A., Lucas, H., Kondorosi, A., and Ratet, P. 2003. Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J. 34:95‐106. doi: 10.1046/j.1365‐313X.2003.01701.x.
  Dierking, E.C., and Bilyeu, K.D. 2009. New sources of soybean seed meal and oil composition traits identified through TILLING. BMC Plant Biol. 9:89. doi: 10.1186/1471‐2229‐9‐89.
  Falco, S.C., Guida, T., Locke, M., Mauvais, J., Sanders, C., Ward, R.T., and Webber, P. 1995. Transgenic canola and soybean seeds with increased lysine. Nat. Biotechnol. 13:577‐582. doi: 10.1038/nbt0695‐577.
  Fehr, W.R., Welke, G.A., Cianzio, S.R., Duvick, D.N., and Hammond, E.G. 1991. Inheritance of reduced palmitic acid content in seed oil of soybean. Crop Sci. 31:88‐89. doi: 10.2135/cropsci1991.0011183X003100010022x.
  Findley, S.D., Pappas, A.L., Cui, Y., Birchler, J.A., Palmer, R.G., and Stacey, G. 2011. Fluorescence in situ hybridization‐based karyotyping of soybean translocation lines. G3 (Bethesda) 1:117‐129. doi: 10.1534/g3.111.000034.
  Gidoni, D., Fuss, E., Burbidge, A., Speckmann, G., James, S., Nijkamp, D., Mett, A., Feiler, J., Smoker, M., de Vroomen, M.J., Leader, D., Liharska, T., Groenendijk, J., Coppoolse, E., Smit, J.J., Levin, I., de Both, M., Schuch, W., Jones, J.D., Taylor, I.B., Theres, K., and van Haaren, M.J. 2003. Multi‐functional T‐DNA/Ds tomato lines designed for gene cloning and molecular and physical dissection of the tomato genome. Plant Mol. Biol. 51:83‐98. doi: 10.1023/A:1020718520618.
  Gillman, J.D., Baxter I., and Bilyeu, K. 2013. Phosphorus partitioning of soybean lines containing different mutant alleles of two soybean seed‐specific adenosine triphosphate‐binding cassette phytic acid transporter paralogs. Plant Genome doi: 10.3835/plantgenome2012.06.0010.
  Gillman, J.D., Stacey, M.G., Cui, Y., Berg, H.R., and Stacey, G. 2014. Deletions of the SACPD‐C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules. BMC Plant Biol. 14:143. doi: 10.1186/1471‐2229‐14‐143.
  Gizlice, Z., Carter, T.E., and Burton, J.W. 1994. Genetic base for North American public soybean cultivars released between 1947 and 1988. Crop Sci. 34:1143‐1151. doi: 10.2135/cropsci1994.0011183X003400050001x.
  Gobinath, P., and Pavadai, P. 2015. Morphology and yield parameters and biochemical analysis of soybean (Glycine max (L.) Mrr.) using Gamma rays, EMS and DES treatment. Int. Lett. Nat. Sci. 35:50‐58. doi: 10.18052/www.scipress.com/ILNS.35.50.
  Gong, J., Waner, D.A., Horie, T., Li, S.L., Horie, R., Abid, K.B., and Schroeder, J.I. 2004. Microarray‐based rapid cloning of an ion accumulation deletion mutant in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 101:15404‐15409. doi: 10.1073/pnas.0404780101.
  Grandbastien, M.A., Spielmann, A., and Caboche, M. 1989. Tnt1, a mobile retroviral‐like transposable element of tobacco isolated by plant cell genetics. Nature 337:376‐380. doi: 10.1038/337376a0.
  Grant, D., Nelson, R.T., Cannon, S.B., and Shoemaker, R.C. 2010. SoyBase, the USDA‐ARS soybean genetics and genomics database. Nucl. Acids Res. 38:D843‐D846. doi: 10.1093/nar/gkp798.
  Gremaud, M.F., and Harper, J.E. 1989. Selection and initial characterization of partially nitrate tolerant nodulation mutants of soybean. Plant Physiol. 89:169‐173. doi: 10.1104/pp.89.1.169.
  Groose, R.W., Schulte, S.M., and Palmer, R.G. 1990. Germinal reversion of an unstable mutation for anthoeyanin pigmentation in soybean. Theor. Appl. Genet. 79:161‐167. doi: 10.1007/BF00225946.
  Groose, R.W., Weigelt, H.D., and Palmer, R.G. 1988. Somatic analysis of an unstable mutation for anthocyanin pigmentation in soybean. J. Hered. 79:263‐267.
  Guo, J., Wang, Y., Song, C., Zhou, J., Qiu, L., Huang, H., and Wang, Y. 2010. A single origin and moderate bottleneck during domestication of soybean (Glycine max): Implications from microsatellites and nucleotide sequences. Ann. Bot. 106:505‐514. doi: 10.1093/aob/mcq125.
  Hajika, M., Igita, K., and Kitamura, K. 1991. A line lacking all the seed lipoxygenase isozymes in soybean [Glycine max (L.) MERRILL] induced by gamma‐ray irradiation. Jpn. J. Breed. 41:507‐509. doi: 10.1270/jsbbs1951.41.507.
  Hammond, E.G., and Fehr, W.R. 1975. Oil quality improvement in soybeans‐Glycine max (L.) Merr. Fett. Wiss. Technol. 77:97‐101.
  Hammond, E.G., andFehr, W.R. 1983. Registration of A5 germplasm line of soybean (reg. No. GP44). Crop Sci. 23:192‐193. doi: 10.2135/cropsci1983.0011183X002300010086x.
  Hammond, E.G., and Fehr, W.R. 1984. Improving the fatty acid composition of soybean oil. J. Am. Oil Chem. Soc. 61:1713‐1716. doi: 10.1007/BF02582133.
  Hancock, C.N., Zhang, F., Floyd, K., Richardson, A.O., LaFayette, P., Tucker, D., Wessler, S.R., and Parrott, W.A. 2011. The rice miniature inverted repeat transposable element mPing is an effective insertional mutagen in soybean. Plant Physiol. 157:552‐562. doi: 10.1104/pp.111.181206.
  Hancock, C.N., Zhang, F., and Wessler, S.R. 2010. Transposition of the Tourist‐MITE mPing in yeast: An assay that retains key features of catalysis by the class 2 PIF/Harbinger superfamily. Mob. DNA 1:5. doi: 10.1186/1759‐8753‐1‐5.
  Haun, W., Coffman, A., Clasen, B.M., Demorest, Z.L., Lowy, A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A., Cedrone, F., Mathis, L., Voytas, D.F., and Zhang, F. 2014. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. J. 12:934‐940. doi: 10.1111/pbi.12201.
  Haun, W.J., Hyten, D.L., Xu, W.W., Gerhardt, D.J., Albert, T.J., Richmond, T., Jeddeloh, J.A., Jia, G., Springer, N.M., Vance, C.P., and Stupar, R.M. 2011. The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. Plant Physiol. 155:645‐655. doi: 10.1104/pp.110.166736.
  Hirochika, H. 1993. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12:2521‐2528.
  Hitz, W.D., Carlson, T.J., Kerr, P.S., and Sebastian, S.A. 2002. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol. 128:650‐660. doi: 10.1104/pp.010585.
  Horak, M.J., Rosenbaum, E.W., Kendrick, D.L., Sammons, B., Phillips, S.L., Nickson, T.E., Dobert, R.C., and Perez, T. 2015. Plant characterization of Roundup Ready 2 Yield soybean, MON 89788, for use in ecological risk assessment. Transgenic Res. 24:213‐225. doi: 10.1007/s11248‐014‐9839‐3.
  Hoshino, T., Watanabe, S., Takagi, Y., and Anai, T. 2014. A novel GmFAD3‐2a mutant allele developed through TILLING reduces α‐linolenic acid content in soybean seed oil. Breeding Sci. 64:371‐377. doi: 10.1270/jsbbs.64.371.
  Humphrey, L.M. 1951. Effects of neutron irradiation on soybeans. Soybean Digest 12:11‐12.
  Hymowitz, T., Orf, J.H., Kaizuma, N., and Skorupska, H. 1978. Screening the USDA soybean germplasm collection for Kunitz trypsin inhibitor variants. Soybean Genet. Newsl. 5:19‐21.
  Hymowitz, T., and Shurtleff, W.R. 2005. Debunking soybean myths and legends in the historical and popular literature. Crop Sci. 45:473‐476. doi: 10.2135/cropsci2005.0473.
  Hyten, D.L., Smith, J.R., Frederick, R.D., Tucker, M.L., Song, Q., and Cregan, P.B. 2009. Bulked segregant analysis using the GoldenGate assay to locate the Rpp3 locus that confers resistance to soybean rust in soybean. Crop Sci. 49:265‐271. doi: 10.2135/cropsci2008.08.0511.
  Hyten, D.L., Song, Q., Zhu, Y., Choi, I.Y., Nelson, R.L., Costa, J.M., Specht, J.E., Shoemaker, R.C., and Cregan, P.B. 2006. Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl. Acad. Sci. U.S.A. 103:16666‐16671. doi: 10.1073/pnas.0604379103.
  Iantcheva, A., Chabaud, M., Cosson, V., Barascud, M., Schutz, B., Primard‐Brisset, C., Durand, P., Barker, D.G., Vlahova, M., and Ratet, P. 2009. Osmotic shock improves Tnt1 transposition frequency in Medicago truncatula cv Jemalong during in vitro regeneration. Plant Cell Rep. 28:1563‐1572. doi: 10.1007/s00299‐009‐0755‐6.
  Ininda, J., Fehr, W.R., Cianzio, S.R., and Schnebly, S.R. 1996. Genetic gain in soybean populations with different percentages of plant introduction parentage. Crop Sci. 36:1470‐1472. doi: 10.2135/cropsci1996.0011183X003600060008x.
  Izawa, T., Ohnishi, T., Nakano, T., Ishida, N., Enoki, H., Hashimoto, H., Itoh, K., Terada, R., Wu, C., Miyazaki, C., Endo, T., Iida, S., and Shimamoto, K. 1997. Transposon tagging in rice. Plant Mol. Biol. 35:219‐229. doi: 10.1023/A:1005769605026.
  Jacobs, T.B., LaFayette, P.R., Schmitz, R.J., and Parrott, W.A. 2015. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 15:16. doi: 10.1186/s12896‐015‐0131‐2.
  Jiang, N., Bao, Z., Zhang, X., Hirochika, H., Eddy, S.R., McCouch, S.R., and Wessler, S.R. 2003. An active DNA transposon family in rice. Nature 421:163‐167. doi: 10.1038/nature01214.
  Jones, J.D., Carland, F., Lim, E., Ralston, E., and Dooner, H.K. 1990. Preferential transposition of the maize element activator to linked chromosomal locations in tobacco. Plant Cell 2:701‐707. doi: 10.1105/tpc.2.8.701.
  Kabelka, E.A., Carlson, S.R., and Diers, B.W. 2006. Glycine soja PI 468916 SCN resistance loci's associated effects on soybean seed yield and other agronomic traits. Crop Sci. 46:622‐629. doi: 10.2135/cropsci2005.06‐0131.
  Kikuchi, K., Terauchi, K., Wada, M., and Hirano, H.Y. 2003. The plant MITE mPing is mobilized in anther culture. Nature 421:167‐170. doi: 10.1038/nature01218.
  Kim, D.S., Lee, K.J., Kim, J.B., Kim, S.H., Song, J.Y., Seo, Y.W., Lee, B.M., and Kang, S.Y. 2010. Identification of Kunitz trypsin inhibitor mutations using SNAP markers in soybean mutant lines. Theor. Appl. Genet. 121:751‐760. doi: 10.1007/s00122‐010‐1346‐1.
  Kinney, A.J. 1996. Development of genetically engineered soybean oils for food applications. J. Food Lipids 3:273‐292. doi: 10.1111/j.1745‐4522.1996.tb00074.x.
  Kitagawa, S., Ishimoto, M., Kikuchi, F., and Kitamura, K. 1991. A characteristic lacking or decreasing remarkably 7S globulin subunits induced with γ‐ray irradiation in soybean seeds. Jpn. J. Breed. 41:460‐461.
  Kolesnik, T., Szeverenyi, I., Bachmann, D., Kumar, C.S., Jiang, S., Ramamoorthy, R., Cai, M., Ma, Z.G., Sundaresan, V., and Ramachandran, S. 2004. Establishing an efficient Ac/Ds tagging system in rice: Large‐scale analysis of Ds flanking sequences. Plant J. 37:301‐314. doi: 10.1046/j.1365‐313X.2003.01948.x.
  Kumari, S., Lal, S.K., and Sachdev, A. 2014. Identification of putative low phytic acid mutants and assessment of the total P, phytate P, protein and divalent cations in mutant populations of soybean. Aust. J. Crop Sci. 8:435‐441.
  Lee, H.S., Chae, Y.A., Park, E.H., Kim, Y.W., Yun, K.I., and Lee, S.H. 1997. Introduction, development, and characterization of supernodulating soybean mutant. I. Mutagenesis of soybean and selection of supernodulating mutant. Korean J. Crop Sci. 42:247‐253.
  Lee, J.D., Shannon, J.G., Vuong, T.D., and Nguyen, H.T. 2009. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463. J. Hered. 100:798‐801. doi: 10.1093/jhered/esp027.
  Li, D., Pfeiffer, T.W., and Cornelius, P.L. 2008. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci. 48:571‐581. doi: 10.2135/cropsci2007.06.0361.
  Li, X., Song, Y., Century, K., Straight, S., Ronald, P., Dong, X., Lassner, M., and Zhang, Y. 2001. A fast neutron deletion mutagenesis‐based reverse genetics system for plants. Plant J. 27:235‐242. doi: 10.1046/j.1365‐313x.2001.01084.x
  Li, Y., Zhao, S., Ma, J., Li, D., Yan, L., Li, J., Qi, X., Guo, X., Zhang, L., He, W., Chang, R., Liang, Q., Guo, Y., Ye, C., Wang, X., Tao, Y., Guan, R., Wang, J., Liu, Y., Jin, L., Zhang, X., Liu, Z., Zhang, L., Chen, J., Wang, K., Nielsen, R., Li, R., Chen, P., Li, W., Reif, J., Purugganan, M., Wang, J., Zhang, M., Wang, J., and Qiu, L., 2013. Molecular footprints of domestication and improvement in soybean revealed by whole genome re‐sequencing. BMC Genomics 14:579. doi: 10.1186/1471‐2164‐14‐579.
  Li, Z., Liu, Z.B., Xing, A., Moon, B.P., Koellhoffer, J.P., Huang, L., Ward, R.T., Clifton, E., Falco, S.C., and Cigan, A.M. 2015. Cas9‐guide RNA directed genome editing in soybean. Plant Physiol. 169:960‐970. doi: 10.1104/pp.15.00783.
  Lightner, J., and Caspar, T. 1998. Seed mutagenesis of Arabidopsis. In Arabidopsis Protocols. pp. 91‐102. Humana Press, Totowa, N.J.
  Liu, B., Fujita, T., Yan, Z.H., Sakamoto, S., Xu, D., and Abe, J. 2007. QTL mapping of domestication‐related traits in soybean (Glycine max). Ann. Bot. 100:1027‐1038. doi: 10.1093/aob/mcm149.
  Liu, S., Kandoth, P.K., Warren, S.D., Yeckel, G., Heinz, R., Alden, J., Yang, C., Jamai, A., El‐Mellouki, T., Juvale, P.S., Hill, J., Baum, T.J., Cianzio, S., Whitham, S.A., Korkin, D., Mitchum, M.G., and Meksem, K. 2012. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256‐260. doi: 10.1038/nature11651.
  Liu, Y.G., Mitsukawa, N., Oosumi, T., and Whittier, R.F. 1995. Efficient isolation and mapping of Arabidopsis thaliana T‐DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8:457‐463. doi: 10.1046/j.1365‐313X.1995.08030457.x.
  Lucas, H., Feuerbach, F., Kunert, K., Grandbastien, M.A., and Caboche, M. 1995. RNA‐mediated transposition of the tobacco retrotransposon Tnt1 in Arabidopsis thaliana. EMBO J. 14:2364‐2373.
  Martienssen, R.A. 1998. Functional genomics: Probing plant gene function and expression with transposons. Proc. Natl. Acad. Sci. U.S.A. 95:2021‐2026. doi: 10.1073/pnas.95.5.2021.
  Mathieu, M., Winters, E.K., Kong, F., Wan, J., Wang, S., Eckert, H., Luth, D., Paz, M., Donovan, C., Zhang, Z., Somers, D., Wang, K., Nguyen, H., Shoemaker, R.C., Stacey, G., and Clemente, T. 2009. Establishment of a soybean (Glycine max Merr. L) transposon‐based mutagenesis repository. Planta 229:279‐289. doi: 10.1007/s00425‐008‐0827‐9.
  Mazier, M., Botton, E., Flamain, F., Bouchet, J.P., Courtial, B., Chupeau, M.C., Chupeau, Y., Maisonneuve, B., and Lucas, H. 2007. Successful gene tagging in lettuce using the Tnt1 retrotransposon from tobacco. Plant Physiol. 144:18‐31. doi: 10.1104/pp.106.090365.
  McCallum, C.M., Comai, L., Greene, E.A., and Henikoff, S. 2000. Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol. 123:439‐442. doi: 10.1104/pp.123.2.439.
  Men, A.E., Laniya, T.S., Searle, I.R., Iturbe‐Ormaetxe, I., Gresshoff, I., Jiang, Q., Carroll, B.J., and Gresshoff, P.M. 2002. Fast neutron mutagenesis of soybean (Glycine soja L.) produces a supernodulating mutant containing a large deletion in linkage group H. Genome Lett. 1:147‐155. doi: 10.1166/gl.2002.017.
  Michno, J.M., Wangab, X., Liu, J., Curtin, S.J., Kono, T.J.Y., and Stupar, R.M. 2015. CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web‐tool and a modified Cas9 enzyme. GM Crops Food 6:243‐252. doi: 10.1080/21645698.2015.1106063.
  Morrell, P.L., Toleno, D.M., Lundy, K.E., and Clegg, M.T. 2005. Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self‐fertilization. Proc. Natl. Acad. Sci. U.S.A. 102:2442‐2447. doi: 10.1073/pnas.0409804102.
  Mounts, Y.L., Warner, K., Lista, G.R., Kleiman, R., Fehro, W.R., Hammondo, E.G., and Wileoxc, J.R. 1988. Effect of altered fatty acid composition on soybean oil stability. J. Am. Oil Chem. Soc. 65:624‐628. doi: 10.1007/BF02540691.
  Mroczka, A., Roberts, P.D., Fillatti, J.J., Wiggins, B.E., Ulmasov, T., and Voelker, T. 2010. An intron sense suppression construct targeting soybean FAD2‐1 requires a double‐stranded RNA‐producing inverted repeat T‐DNA insert. Plant Physiol. 153:882‐891. doi: 10.1104/pp.110.154351.
  Naito, K., Cho, E., Yang, G., Campbell, M.A., Yano, K., Okumoto, Y., Tanisaka, T., and Wessler, S.R. 2006. Dramatic amplification of a rice transposable element during recent domestication. Proc. Natl. Acad. Sci. U.S.A. 103:17620‐17625. doi: 10.1073/pnas.0605421103.
  Nakazaki, T., Okumoto, Y., Horibata, A., Yamahira, S., Teraishi, M., Nishida, H., Inoue, H., and Tanisaka, T. 2003. Mobilization of a transposon in the rice genome. Nature 421:170‐172. doi: 10.1038/nature01219.
  Nei, M., and Li, W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 76:5269‐5273. doi: 10.1073/pnas.76.10.5269.
  Nichols, D.M., Glover, K.D., Carlson, S.R., Specht, J.E., and Diers, B.W. 2006. Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Sci. 46:834‐839. doi: 10.2135/cropsci2005.05‐0168.
  Odanaka, H., and Kaizuma, N. 1989. Mutants on soybean storage proteins induced with γ‐ray irradiation. Jpn. J. Breed. 39:430‐431.
  Orf, J.H., and Denny, R.L. 2004. Registration of “MN1302” soybean. Crop Sci. 44:693. doi: 10.2135/cropsci2004.6930.
  Orf, J.H., and Hymowitz, T. 1979. Inheritance of the absence of the Kunitz trypsin inhibitor in seed protein of soybeans. Crop Sci. 19:107‐109. doi: 10.2135/cropsci1979.0011183X001900010026x.
  Padgette, S.R., Kolacz, K.H., Delannay, X., Re, D.B., LaVallee, B.J., Tinius, C.N., Rhodes, W.K., Otero, Y.I., Barry, G.F., Eichholtz, D.A., Peschke, V.M., Nida, D.L., Taylorand, N.B., and Kishore, G.M. 1995. Development, identification, and characterization of a glyphosate‐tolerant soybean line. Crop Sci. 35:1451‐1461. doi: 10.2135/cropsci1995.0011183X003500050032x.
  Palmer, R.G., Hedges, B.R., Benavente, R.S., and Groose, R.W. 1989. w4‐Mutable line in soybean. Dev. Genet. 10:542‐551. doi: 10.1002/dvg.1020100613.
  Palmer, R.G., Sandhu, D., Curran, K., and Bhattacharyya, M.K. 2008a. Molecular mapping of 36 soybean male‐sterile, female‐sterile mutants. Theor. Appl. Genet. 117:711‐719. doi: 10.1007/s00122‐008‐0812‐5.
  Palmer, R.G., Zhang, L., Huang, Z.P., and Xu, M. 2008b. Allelism and molecular mapping of soybean necrotic root mutants. Genome 51:243‐250. doi: 10.1139/G08‐001.
  Pham, A.T., Lee, J.D., Shannon, J.G., and Bilyeu, K.D. 2010. Mutant alleles of FAD2‐1A and FAD2‐1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol. 10:195. doi: 10.1186/1471‐2229‐10‐195.
  Rahman, S.M., Kinoshita, T., Anai, T., Arima, S., and Takagi, Y. 1998. Genetic relationships of soybean mutants for different linolenic acid contents. Crop Sci. 38:702‐706. doi: 10.2135/cropsci1998.0011183X003800030014x.
  Rahman, S.M., Takagi, Y., Kubota, K., Miyamoto, K., and Kawakita, T. 1994. High oleic acid mutant in soybean induced by X‐Ray irradiation. Biosci. Biotechnol. Biochem. 58:1070‐1072. doi: 10.1271/bbb.58.1070.
  Rahman, S.M., Takagi, Y., Miyamoto, K., and Kawakita, T. 1995. High stearic acid soybean mutant induced by X‐ray irradiation. Biosci. Biotechnol. Biochem. 59:922‐923. doi: 10.1271/bbb.59.922.
  Raval, J., Baumbach, J., Ollhoff, A.R., Pudake, R.N., Palmer, R.G., Bhattacharyya, M.K., and Sandhu, D. 2013. A candidate male‐fertility female‐fertility gene tagged by the soybean endogenous transposon, Tgm9. Funct. Integr. Genomics 13:67‐73. doi: 10.1007/s10142‐012‐0304‐1.
  Rawlings, J.O., Hanway, D.G., and Gardner, C.O. 1958. Variation in quantitative characters of soybeans after seed irradiation. Agron. J. 50:524‐528. doi: 10.2134/agronj1958.00021962005000090009x.
  Rédei, G.P., Acedo, G.N., and Sandhu, S.S. 1984. Mutation induction and detection in Arabidopsis. In Mutation, Cancer, and Malformation. (E.H.Y. Chu and W.M. Generoso, eds.) pp. 285‐313. Plenum Press, New York.
  Riggs, R., Wang, S., Singh, R., and Hymowitz, T. 1998. Possible transfer of resistance to Heterodera glycines from Glycine tomentella to Glycine max. J. Nematol. 30:547‐552.
  Ríos, G., Naranjo, M.A., Iglesias, D.J., Ruiz‐Rivero, O., Geraud, M., Usach, A., and Talón, M. 2008. Characterization of hemizygous deletions in citrus using array‐comparative genomic hybridization and microsynteny comparisons with the poplar genome. BMC Genomics 9:381. doi: 10.1186/1471‐2164‐9‐381.
  Ross, J.P., and Brim, C.A. 1957. Resistance of soybeans to the soybean cyst nematode as determined by a double‐row method. Plant Dis. Rep. 41:923‐924.
  Ruddle, P., Whetten, R., Cardinal, A., Upchurch, R.G., and Miranda, L. 2013. Effect of a novel mutation in a Δ9‐stearoyl‐ACP‐desaturase on soybean seed oil composition. Theor. Appl. Genet. 126:241‐249. doi: 10.1007/s00122‐012‐1977‐5.
  Ryan, S.A., and Harper, J.E. 1983. Mutagenesis of soybeans. Soybean Genet. Newsl. 10:29‐32.
  Schmidt, M.A., Hymowitz, T., and Herman, E.M. 2015. Breeding and characterization of soybean Triple Null; a stack of recessive alleles of Kunitz Trypsin Inhibitor, Soybean Agglutinin, and P34 allergen nulls. Plant Breed. 134:310‐315. doi: 10.1111/pbr.12265.
  Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., Xu, D., Hellsten, U., May, G.D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M.K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell‐Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.‐C., Shinozaki, K., Nguyen, H.T., Wing, R.A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R.C., and Jackson, S.A. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463:178‐183. doi: 10.1038/nature08670.
  Schoener, C.S., and Fehr, W.R. 1979. Utilization of plant introductions in soybean breeding populations. Crop Sci. 19:185‐188. doi: 10.2135/cropsci1979.0011183X001900020003x.
  Sebastian, S.A., and Chaleff, R.S. 1987. Soybean mutants with increased tolerance for sulfonylurea herbicides. Crop Sci. 27:948‐952. doi: 10.2135/cropsci1987.0011183X002700050025x.
  Sebastian, S.A., Fader, G.M., Ulrich, J.F., Forney, D.R., and Chaleff, R.S. 1989. Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci. 29:1403‐1408. doi: 10.2135/cropsci1989.0011183X002900060014x.
  Sebolt, A.M., Shoemaker, R.C., and Diers, B.W. 2000. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci. 40:1438‐1444. doi: 10.2135/cropsci2000.4051438x.
  Singh, R.J., and Nelson, R.L. 2015. Intersubgeneric hybridization between Glycine max and G. tomentella: Production of F1, amphidiploid, BC1, BC2, BC3, and fertile soybean plants. Theor. Appl. Genet. 128:1117‐1136. doi: 10.1007/s00122‐015‐2494‐0.
  Song, Q., Hyten, D.L., Jia, G., Quigley, C.V., Fickus, E.W., Nelson, R.L., and Cregan, P.B. 2015. Fingerprinting soybean germplasm and its utility in genomic research. G3 (Bethesda) 5:1999‐2006. doi: 10.1534/g3.115.019000.
  Stewart, C.N., Adang, M.J., All, J.N., Boerma, H.R., Cardineau, G., Tucker, D., and Parrott, W.A. 1996. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol. 112:121‐129. doi: 10.1104/pp.112.1.121.
  Stijšin, D., Luzzi, B.M., Ablett, G.R., and Tanner, J.W. 1998. Inheritance of low linolenic acid level in the soybean line RG10. Crop Sci. 38:1441‐1444. doi: 10.2135/cropsci1998.0011183X003800060006x.
  Stupar, R.M., and Specht, J.E. 2013. Insights from the soybean (Glycine max and Glycine soja) genome: Past, present, and future. Adv. Agron. 118:177‐204. doi: 10.1016/B978‐0‐12‐405942‐9.00004‐9.
  Tadege, M., Ratet, P., and Mysore, K.S. 2005. Insertional mutagenesis: A Swiss Army knife for functional genomics of Medicago truncatula. Trends Plant Sci. 10:229‐235. doi: 10.1016/j.tplants.2005.03.009.
  Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., Cayrel, A., Endre, G., Zhao, P.X., Chabaud, M., Ratet, P., and Mysore, K.S. 2008. Large‐scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J. 54:335‐347. doi: 10.1111/j.1365‐313X.2008.03418.x.
  Tajima, F. 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437‐460.
  Takagi, Y., Hossain, A.B.M.M., Yanagita, T., and Kusaba, S. 1989. High linolenic acid mutant in soybean induced by X‐ray irradiation. Jpn. J. Breed. 39:403‐409. doi: 10.1270/jsbbs1951.39.403.
  Takagi, Y., Hossain, A.B.M.M., Yanagita, T., Matsueda, T., and Murayama, A. 1990. Linolenic acid content in soybean improved by X‐ray irradiation. Agric. Biol. Chem. 54:1735‐1738. doi: 10.1271/bbb1961.54.1735.
  Takagi, Y., and Rahman, S.M. 1995. Variation of different fatty acids in mutants in comparison with natural soybean varieties. Bull. Fac. Agric. Saga Univ. 79:23‐27.
  Takagi, Y., Rahman, S.M., Joo, H., and Kawakita, T. 1995. Reduced and elevated palmitic acid mutants in soybean developed by X‐ray irradiation. Biosci. Biotechnol. Biochem. 59:1778‐1779. doi: 10.1271/bbb.59.1778.
  Takahashi, K., Banba, H., Kikuchi, A., Ito, M., and Nakamura, S. 1994. An induced mutant line lacking the α‐subunit of β‐conglycinin in soybean (Glycine max (L.) Merrill). Breeding Sci. 44:65‐66.
  Tardivel, A., Sonah, H., Belzile, F., and O'Donoughue, L.S. 2014. Rapid identification of alleles at the soybean maturity gene E3 using genotyping by sequencing and a haplotype‐based approach. Plant Genome doi:10.3835/plantgenome2013.10.0034.
  Thompson, J.A., and Nelson, R.L. 1998. Utilization of diverse germplasm for soybean yield improvement. Crop Sci. 38:1362‐1368. doi: 10.2135/cropsci1998.0011183X003800050035x.
  Trick, H.N., Dinkins, R.D., Santarém, E.R., Samoyolov, R.D.V, Meurer, C., Walker, D., Parrott, W.A., Finer, J.J., and Collins, G.B. 1997. Recent advances in soybean transformation. Plant Tissue Cult. Biotechnol. 3:9‐26.
  Tsuda, M., Kaga, A., Anai, T., Shimizu, T., Sayama, T., Takagi, K., Machita, K., Watanabe, S., Nishimura, M., Yamada, N., Mori, S., Sasaki, H., Kanamori, H., Katayose, Y., and Ishimoto, M. 2015. Construction of a high‐density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing. BMC Genomics 16:1014. doi: 10.1186/s12864‐015‐2079‐y.
  Vello, N.A., Fehr, W.R., and Bahrenfus, J.B. 1984. Genetic variability and agronomic performance of soybean populations developed from plant introductions. Crop Sci. 24:511‐514. doi: 10.2135/cropsci1984.0011183X002400030020x.
  Vincent, J.A., Stacey, M., Stacey, G., and Bilyeu, K.D. 2015. Phytic acid and inorganic phosphate composition in soybean lines with independent IPK1 mutations. Plant Genome 8. doi: 10.3835/plantgenome2014.10.0077.
  Voytas, D.F., and Gao, C. 2014. Precision genome engineering and agriculture: Opportunities and regulatory challenges. PLoS Biol. 12:1‐6. doi: 10.1371/journal.pbio.1001877.
  Wang, D., Arelli, P.R., Shoemaker, R.C., and Diers, B.W. 2001. Loci underlying resistance to Race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theor. Appl. Genet. 103:561‐566. doi: 10.1007/PL00002910.
  Watanabe, S., Hideshima, R., Xia, Z., Tsubokura, Y., Sato, S., Nakamoto, Y., Yamanaka, N., Takahashi, R., Ishimoto, M., Anai, T., Tabata, S., and Harada, K. 2009. Map‐based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251‐1262. doi: 10.1534/genetics.108.098772.
  Watanabe, S., Xia, Z., Hideshima, R., Tsubokura, Y., Sato, S., Yamanaka, N., Takahashi, R., Anai, T., Tabata, S., Kitamura, K., and Harada, K. 2011. A map‐based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395‐407. doi: 10.1534/genetics.110.125062.
  Weigelt, H.D., Palmer, R.G., and Groose, R.W. 1990. Origin of the w4‐m allele. Soybean Genet. Newsl. 17:81‐84.
  Wilcox, J.R., Cavins, J.F., and Nielsen, N.C. 1984. Genetic alteration of soybean oil composition by a chemical mutagen. J. Am. Oil Chem. Soc. 61:97‐100. doi: 10.1007/BF02672055.
  Wilcox, J.R., Premachandra, G.S., Young, K.A., and Raboy, V. 2000. Isolation of high seed inorganic P, low‐phytate soybean mutants. Crop Sci. 40:1601‐1605. doi: 10.2135/cropsci2000.4061601x.
  Winter, S.M.J., Shelp, B.J., Anderson, T.R., Welacky, T.W., and Rajcan, I. 2007. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B. Theor. Appl. Genet. 114:461‐472. doi: 10.1007/s00122‐006‐0446‐4.
  Wright, S.I., Bi, I., Schroeder, S., and Yamasaki, M. 2005. The effects of artificial selection on the maize genome. Science 308:1310‐1314. doi: 10.1126/science.1107891.
  Xia, Z., Watanabe, S., Yamada, T., Tsubokura, Y., Nakashima, H., Zhai, H., Anai, T., Sato, S., Yamazaki, T., Lü, S., Wu, H., Tabata, S., and Harada, K. 2012. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc. Natl. Acad. Sci. U.S.A. 109:E2155‐E2164. doi: 10.1073/pnas.1117982109.
  Xu, M., Brar, H.K., Grosic, S., Palmer, R.G., and Bhattacharyya, M.K. 2010. Excision of an active CACTA‐like transposable element from DFR2 causes variegated flowers in soybean [Glycine max (L.) Merr.]. Genetics 184:53‐63. doi: 10.1534/genetics.109.107904.
  Yang, G., Zhang, F., Hancock, C.N., and Wessler, S.R. 2007. Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104:10962‐10967. doi: 10.1073/pnas.0702080104.
  Yuan, F.J., Zhao, H.J., Ren, X.L., Zhu, S.L., Fu, X.J., and Shu, Q.Y. 2007. Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theor. Appl. Genet. 115:945‐957. doi: 10.1007/s00122‐007‐0621‐2.
  Zeng, P., Vadnais, D.A., Zhang, Z., and Polacco, J.C. 2004. Refined glufosinate selection in Agrobacterium‐mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Rep. 22:478‐482. doi: 10.1007/s00299‐003‐0712‐8.
  Zhao, S., Zheng, F., He, W., Wu, H., Pan, S., and Lam, H.M. 2015. Impacts of nucleotide fixation during soybean domestication and improvement. BMC Plant Biol. 15:1‐12. doi: 10.1186/s12870‐014‐0410‐4.
  Zhou, Z., Jiang, Y., Wang, Z., Gou, Z., Lyu, J., Li, W., Yu, Y., Shu, L., Zhao, Y., Ma, Y., Fang, C., Shen, Y., Liu, T., Li, C., Li, Q., Wu, M., Wang, M., Wu, Y., Dong, Y., Wan, W., Wang, X., Ding, Z., Gao, Y., Xiang, H., Zhu, B., Lee, S.‐H., Wang, W., and Tian, Z. 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33:408‐414. doi: 10.1038/nbt.3096.
  Zhu, B.G., and Sun, Y.R. 2006. Inheritance of the four‐seeded‐pod trait in a soybean mutant and marker‐assisted selection for this trait. Plant Breed. 125:405‐407. doi: 10.1111/j.1439‐0523.2006.01250.x.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library