Soluble Sugar and Starch Extraction and Quantification from Maize (Zea mays) Leaves

Kristen A. Leach1, David M. Braun1

1 Division of Biological Sciences, Interdisciplinary Plant Group, Missouri Maize Center, University of Missouri, Columbia, Missouri
Publication Name:  Current Protocols in Plant Biology
Unit Number:   
DOI:  10.1002/cppb.20018
Online Posting Date:  May, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


An easy‐to‐perform protocol for isolating and quantifying soluble sugars (sucrose, glucose, and fructose) and starch from maize (Zea mays) leaf tissue is described. The method has been optimized to extract non‐structural carbohydrates (NSC) from frozen, finely ground tissue in a methanol:chloroform:water solution. Three rounds of tissue extraction for 30 min each at 50°C provide quantitative recovery of soluble sugars. The use of alternative extraction solvents is discussed, as well as the advantages and disadvantages of these solvents. Additionally, we provide two support protocols. The first quantifies the isolated NSC via commercially available enzymatic kits that couple the amount of each specific sugar to the production of NADPH, which is detected using equipment readily available to most laboratories. The second describes the preparation of a purification column to remove strongly charged or hydrophobic molecules from the extracted sugar solution, which is required prior to quantification with high‐pressure liquid chromatography or high‐performance anion‐exchange chromatography. The protocols are robust and easily adapted for use in measuring NSC extracted from other plant species or tissues, making them ideal for new users. © 2016 by John Wiley & Sons, Inc.

Keywords: CPA column; fructose; glucose; maize leaf; MCW; non‐structural carbohydrate; NSC; soluble sugars; starch; sucrose

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Soluble Sugar Extraction
  • Basic Protocol 2: Starch Extraction and Enzymatic Degradation to Glucose
  • Support Protocol 1: Using a Commercially Available Enzymatic Kit and a Spectrophotometer to Measure the Concentrations of Soluble Sugars and Starch
  • Support Protocol 2: Collecting the Neutral Fraction Containing Soluble Sugar by Utilizing a Cation:PVPP:anion (CPA) Purification Column to Remove Strongly Charged Molecules
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Soluble Sugar Extraction

  • Maize leaf tissue
  • Liquid nitrogen
  • 12:5:3 (v/v/v) MCW extraction buffer containing lactose (see recipe)
  • 12:5:3 (v/v/v) MCW extraction buffer (no lactose; see recipe)
  • Lactose (10 μg/μl)
  • Mortars and pestles
  • Spatulas
  • 1.7‐ml microcentrifuge tubes
  • Microcentrifuge and centrifuge
  • 50°C water bath
  • 15‐ml polypropylene conical tubes

Basic Protocol 2: Starch Extraction and Enzymatic Degradation to Glucose

  • Tissue pellet from step 14 of protocol 1
  • Dimethyl sulfoxide (DMSO)
  • 100 mM sodium acetate, pH 5.0 (see recipe)
  • α‐Amylase working solution (see recipe)
  • Amyloglucosidase (Megazyme total starch kit, bottle 2, Megazyme, cat. no. K‐TSTA)
  • Boiling water bath
  • 50°C water bath
  • Microcentrifuge
  • −20°C freezer

Support Protocol 1: Using a Commercially Available Enzymatic Kit and a Spectrophotometer to Measure the Concentrations of Soluble Sugars and Starch

  • Soluble sugar extract (from step 20 in protocol 1)
  • Sucrose/D‐Glucose/D‐Fructose assay kit (R‐Biopharm, cat. no. E0716260):
  • Prepare solution 1 by adding 10 ml H 2O to bottle 1
  • Prepare solution 2 by adding 45 ml H 2O to bottle 2
  • Use solution 3 as provided by the manufacturer
  • Use solution 4 as provided by the manufacturer
  • Post‐enzymatic starch digestion containing liberated glucose collected in step 12 of protocol 2
  • Starch assay kit (R‐Biopharm, cat. no. E0207748)
  • Prepare solution 2 by adding 27 ml of H 2O to bottle 2
  • Use solution 3 as provided by the manufacturer
  • 1.5‐ml disposable spectrophotometer cuvettes (Fisher Scientific, cat. no. S759085D)
  • UV spectrophotometer
  • Parafilm (Fisher Scientific, cat. no. S37440)
  • 1.7‐ml microcentrifuge tubes
NOTE: All absorbance measurements are made at 340 nm.

Support Protocol 2: Collecting the Neutral Fraction Containing Soluble Sugar by Utilizing a Cation:PVPP:anion (CPA) Purification Column to Remove Strongly Charged Molecules

  • Cation exchange resin (AG50W‐X4; BioRad, cat. no. 142‐1351)
  • 18.2 mΩ filtered, deionized water
  • 20% methanol
  • Polyvinylpyrrolidone (PVPP) matrix (Acros Organics, cat. no. 227481000)
  • Anion exchange resin (Amberlite IRA‐67 free base, Sigma cat. no. A9960‐1KG or AG1‐X8; BioRad, cat. no. 140‐1441)
  • 1 M sodium carbonate (Na 2CO 3)
  • pH strips, pH 0 to 14 (Fisher Scientific, cat. no. M1095350001)
  • Soluble sugar extract (from step 20 in protocol 1)
  • Beakers
  • Flat‐bottomed disposable paper coffee filters (2¾ in. × 3 in.)
  • Magnetic stir bar
  • Magnetic stir plate
  • 50‐ml polypropylene conical tubes
  • Bio‐Spin Disposable Chromatography Columns (BioRad, cat. no. 732‐6008)
  • 3‐ml (Fisher Scientific, cat. no. 22‐040‐116) and 6‐ml (Fisher Scientific, cat. no. 22‐040‐163) Vacuette tubes (Fisher Scientific, cat. no. 22‐040‐163)
  • 1‐ml syringe filter without needle (Fisher Scientific cat. no. 14‐823‐261)
  • 0.2 μm PVDF syringe filter (Whatman, 13 mm, cat. no. 6779‐1302)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Ayre, B.G., Keller, F., and Turgeon, R. 2003. Symplastic continuity between companion cells and the translocation stream: Long‐distance transport is controlled by retention and retrieval mechanisms in the phloem. Plant Physiol. 131:1518‐1528. doi: 10.1104/pp.012054.
  Baker, R.F. and Braun, D.M. 2008. Tie‐dyed2 functions with tie‐dyed1 to promote carbohydrate export from maize leaves. Plant Physiol. 146:1085‐1097. doi: 10.1104/pp.107.111476.
  Baker, R.F., Leach, K.A., and Braun, D.M. 2012. SWEET as sugar: New sucrose effluxers in plants. Mol. Plant 5:766‐768. doi: 10.1093/mp/SSS054.
  Bihmidine, S., Baker, R.F., Hoffner, C., and Braun, D.M. 2015. Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential Sucrose transporter expression. BMC Plant Biol. 15:186. doi: 10.1186/s12870‐015‐0572‐8.
  Bihmidine, S., Hunter III, C.T., Johns, C.E., Koch, K.E., and Braun, D.M. 2013. Regulation of assimilate import into sink organs: Update on molecular drivers of sink strength. Front. Plant Sci. 4:177. doi: 110.3389/fpls.2013.00177.
  Braun, D.M., Wang, L., and Ruan, Y.‐L. 2014. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 65:1713‐1735. doi: 10.1093/jxb/ert416.
  Braun, D.M., Ma, Y., Inada, N., Muszynski, M.G., and Baker, R.F. 2006. Tie‐dyed1 regulates carbohydrate accumulation in maize leaves. Plant Physiol. 142:1511‐1522. doi: 10.1104/pp.106.090381.
  Brummer, Y. and Cui, S.W. 2005. Understanding carbohydrate analysis. In Food Carbohydrates: Chemistry, Physical Properties and Applications (S. Cui, ed.) pp. 67‐104, New York.
  Camel, V. 2006. Extraction methodologies in plants: General introduction. In Encyclopedia of Analytical Chemistry pp. 1‐26. John Wiley & Sons, Hoboken, N.J.
  Chen, H. and Jiang, J.‐G. 2010. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ. Rev. 18:309‐319. doi: 10.1139/A10‐014.
  Chow, P.S. and Landhäusser, S.M. 2004. A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol. 24:1129‐1136. doi: 10.1093/treephys/24.10.1129.
  Coleman, H.D., Canam, T., Kang, K.‐Y., Ellis, D.D., and Mansfield, S.D. 2007. Over‐expression of UDP‐glucose pyrophosphorylase in hybrid poplar affects carbon allocation. J. Exp. Bot. 58:4257‐4268. doi: 10.1093/jxb/erm287.
  Davis, F., Terry, L.A., Chope, G.A., and Faul, C.F.J. 2007. Effect of extraction procedure on measured sugar concentrations in onion (Allium cepa L.) bulbs. J. Ag. Food Chem. 55:4299‐4306. doi: 10.1021/jf063170p.
  Haritatos, E., Medville, R., and Turgeon, R. 2000. Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211:105‐111. doi: 10.1007/s004250000268.
  Kalt‐Torres, W., Kerr, P.S., Usuda, H., and Huber, S.C. 1987. Diurnal changes in maize leaf photosynthesis: I. Carbon exchange rate, assimilate export rate, and enzyme activities. Plant Physiol. 83:283‐288. doi: 10.1104/pp.83.2.283.
  Koch, K.E. 1996. Carbohydrate‐modulated gene expression in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47:509‐540. doi: 10.1146/annurev.arplant.47.1.509.
  Kölling, K., Thalmann, M., Müller, A., Jenny, C., and Zeeman, S.C. 2015. Carbon partitioning in Arabidopsis thaliana is a dynamic process controlled by the plants metabolic status and its circadian clock. Plant Cell Environ. 38:1965‐1979. doi: 10.1111/pce.12512.
  Lemoine, R., La Camera, S., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., Bonnemain, J.‐L., Laloi, M., Coutos‐Thévenot, P., Maurousset, L., Faucher, M., Girousse, C., Lemonnier, P., Parrilla, J., and Durand, M. 2013. Source to sink transport and regulation by environmental factors. Front. Plant Sci. 4:272. doi:210.3389/fpls.2013.00272.
  Lu, Y. and Sharkey, T.D. 2006. The importance of maltose in transitory starch breakdown. Plant Cell Environ. 29:353‐366. doi: 10.1111/j.1365‐3040.2005.01480.x.
  Ma, Y., Baker, R.F., Magallanes‐Lundback, M., DellaPenna, D., and Braun, D.M. 2008. Tie‐dyed1 and Sucrose export defective1 act independently to promote carbohydrate export from maize leaves. Planta 227:527‐538. doi: 10.1007/s00425‐007‐0636‐6.
  Maness, N. 2010. Extraction and analysis of soluble carbohydrates. In Plant Stress Tolerance, Vol. 639 (R. Sunkar, ed.) pp. 341‐370. Humana Press, Totowa, N.J.
  Park, J.‐Y., Canam, T., Kang, K.‐Y., Unda, F., and Mansfield, S.D. 2009. Sucrose phosphate synthase expression influences poplar phenology. Tree Physiol. 29:937‐946. doi: 10.1093/treephys/tpp028.
  Ranwala, A.P. and Miller, W.B. 2008. Analysis of nonstructural carbohydrates in storage organs of 30 ornamental geophytes by high‐performance anion‐exchange chromatography with pulsed amperometric detection. New Phytol. 180:421‐433. doi: 10.1111/j.1469‐8137.2008.02585.x.
  Ratnayake, W.S. and Jackson, D.S. 2006. Gelatinization and solubility of corn starch during heating in excess water:  New insights. J. Ag. Food Chem. 54:3712‐3716. doi: 10.1021/jf0529114.
  Reed, A.J. and Singletary, G.W. 1989. Roles of carbohydrate supply and phytohormones in maize kernel abortion. Plant Physiol. 91:986‐992. doi: 10.1104/pp.91.3.986.
  Rennie, E.A. and Turgeon, R. 2009. A comprehensive picture of phloem loading strategies. Proc. Natl. Acad. Sci. U.S.A. 106:14162‐14167. doi: 10.1073/pnas.0902279106.
  Ruan, Y.‐L. 2014. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 65:33‐67. doi: 10.1146/annurev‐arplant‐050213‐040251.
  Slewinski, T.L. and Braun, D.M. 2010a. Current perspectives on the regulation of whole‐plant carbohydrate partitioning. Plant Sci. 178:341‐349. doi: 10.1016/j.plantsci.2010.01.010.
  Slewinski, T.L. and Braun, D.M. 2010b. The psychedelic genes of maize redundantly promote carbohydrate export from leaves. Genetics 185:221‐232. doi: 10.1534/genetics.109.113357.
  Slewinski, T.L., Garg, A., Johal, G.S., and Braun, D.M. 2010. Maize SUT1 functions in phloem loading. Plant Sig. Behav. 5:687‐690. doi: 10.4161/psb.5.6.11575.
  Slewinski, T.L., Ma, Y., Baker, R.F., Huang, M., Meeley, R., and Braun, D.M. 2008. Determining the role of Tie‐dyed1 in starch metabolism: Epistasis analysis with a maize ADP‐glucose pyrophosphorylase mutant lacking leaf starch. J. Hered. 99:661‐666. doi: 10.1093/jhered/esn062.
  Smith, A.M. and Stitt, M. 2007. Coordination of carbon supply and plant growth. Plant Cell Environ. 30:1126‐1149. doi: 10.1111/j.1365‐3040.2007.01708.x.
  Srivastava, A.C., Ganesan, S., Ismail, I.O., and Ayre, B.G. 2008. Functional characterization of the Arabidopsis thaliana AtSUC2 Suc/H+ symporter by tissue‐specific complementation reveals an essential role in phloem loading but not in long‐distance transport. Plant Physiol. 147:200‐211. doi: 10.1104/pp.108.124776.
  Taliercio, E.W., Romano, G., Scheffler, J., and Ayre, B.G. 2009. Expression of genes associated with carbohydrate metabolism in cotton stems and roots. BMC Plant Biol. 9:1‐10. doi: 10.1186/1471‐2229‐9‐11.
  Tester, R.F. and Morrison, W.R. 1990. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 67:551‐557.
  Yadav, U.P., Ayre, B.G., and Bush, D.R. 2015. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: Assessing the potential to improve crop yields and nutritional quality. Front. Plant Sci. 6:275 doi: 210.3389/fpls.2015.00275.
  Zeeman, S., Smith, S., and Smith, A. 2007. The diurnal metabolism of leaf starch. Biochem. J. 401:13‐28. doi: 10.1042/BJ20061393.
PDF or HTML at Wiley Online Library