Isolation of Microsomal Membrane Proteins from Arabidopsis thaliana

Erica D. LaMontagne1, Carina A. Collins1, Scott C. Peck2, Antje Heese1

1 University of Missouri–Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, Missouri, 2 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
Publication Name:  Current Protocols in Plant Biology
Unit Number:   
DOI:  10.1002/cppb.20020
Online Posting Date:  May, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Cellular membranes define the boundaries between organelles and the cytosol or the extracellular environment, thus providing functional separation between subcellular compartments. In addition, membranes assist in a diverse range of cellular functions, including serving as signaling platforms, mediating transport of molecules, and facilitating trafficking of cargo between cellular compartments. Because membrane functionality is largely defined by protein composition, exploring the roles of membrane proteins is of interest to many researchers. This article focuses on the subcellular fractionation of microsomes, which are membrane‐derived vesicles formed during cell lysis. In plants, microsomes mainly consist of the plasma membrane and membranes derived from the endoplasmic reticulum, Golgi apparatus, trans‐Golgi network, and tonoplast. The article describes the different steps involved in enriching for and solubilizing microsomal membrane proteins from Arabidopsis thaliana seedlings and cultured cells by differential centrifugation. Solubilized microsomal proteins can be used for subsequent immunoblot analysis, co‐immunoprecipitation, or proteomic studies. © 2016 by John Wiley & Sons, Inc.

Keywords: Arabidopsis thaliana; cellular fractionation; differential centrifugation; microsomes; solubilization of microsomal proteins

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Isolation of Solubilized Microsomal Proteins from Arabidopsis Seedlings
  • Alternate Protocol 1: Isolation of Solubilized Microsomal Proteins from Arabidopsis Suspension‐Cultured Cells
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Isolation of Solubilized Microsomal Proteins from Arabidopsis Seedlings

  • 7‐to 8‐day old Arabidopsis thaliana seedlings
  • 0.5× Murashige & Skoog (MS) agar plates (see recipe)
  • Homogenization buffer (see recipe)
  • White quartz sand (Sigma, cat. no. 26‐0010 SAJ)
  • Protein determination assay kit (e.g., Bradford Protein Assay from BioRad)
  • 6× SDS‐PAGE protein sample buffer (Gallagher, )
  • Nonidet P‐40 substitute (Roche, cat. no. 11332473001)
  • Antibodies against subcellular marker proteins for immunoblotting
  • Porcelain mortar with capacity of 50 ml and porcelain pestle with flat bottom
  • Forceps
  • 15‐ml conical tubes
  • Miracloth (Calbiochem, cat. no. 475855‐1R; cut into 8 × 8 cm squares)
  • Microcentrifuge tubes (1.7 ml and 2.0 ml)
  • Tabletop microcentrifuge with temperature control
  • Preparative ultracentrifuge with compatible rotor (e.g., Optima TXL‐120 Preparative Tabletop Ultracentrifuge with TLA 100.2 fixed‐angle rotor)
  • Thick‐walled polycarbonate tubes (7 × 21 mm, Beckman Coulter)
  • Long round‐ended polypropylene pestles [21 cm (length) × 4.8 mm (shaft) conical tissue grinder; Bel‐Art Products, cat. no. F199210001]
  • Spectrophotometer and cuvettes
  • Additional reagents and equipment for SDS‐PAGE (Gallagher, ) and immunoblotting (Gallagher et al., )

Alternate Protocol 1: Isolation of Solubilized Microsomal Proteins from Arabidopsis Suspension‐Cultured Cells

  • Arabidopsis suspension‐cultured cells (May and Leaver, )
  • 1× Murashige and Skoog (MS) liquid medium (see recipe)
  • Liquid nitrogen
  • White quartz sand (Sigma, cat. no. 26‐0010 SAJ)
  • Homogenization buffer (see recipe)
  • 50‐ml beaker, sterile
  • Rotary shaker
  • Filter paper (Whatman, cat. no. 1002‐070, Grade 2; 70‐mm diameter)
  • Büchner funnel (polypropylene, 80‐mm‐diameter)
  • Vacuum source
  • Side‐arm flask with rubber stopper and rubber tubing
  • Porcelain mortar with capacity of 50 ml and porcelain pestle with flat bottom
  • Metal spatula
  • 15‐ml conical tube
  • Miracloth (Calbiochem, cat. no. 475855‐1R)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Cherry, J.H. 1974. Isolation of microsomes, ribosomes, and polysomes from plant tissues. Methods Enzymol. 31:583‐589. doi: 10.1016/0076‐6879(74)31064‐6.
  Claude, A. 1946a. Fractionation of mammalian liver cells by differential centrifugation: II. experimental procedures and results. J. Exp. Med. 84:61‐89. doi: 10.1084/jem.84.1.61.
  Claude, A. 1946b. Fractionation of mammalian liver cells by differential centrifugation: I. problems, methods, and preparation of extract. J. Exp. Med. 84:51‐59. doi: 10.1084/jem.84.1.51.
  De Duve, C. 1971. Tissue fractionation. Past and present. J. Cell Biol. 50:20 d‐55 d. doi: 10.1083/jcb.50.1.20d.
  Elmore, J.M., Liu, J., Smith, B., Phinney, B., and Coaker, G. 2012. Quantitative proteomics reveals dynamic changes in the plasma membrane during Arabidopsis immune signaling. Mol. Cell Proteomics 11:M111 014555. doi: 10.1074/mcp.M111.014555.
  Gallagher, S.R. 2012. One‐dimensional SDS gel electrophoresis of proteins. Curr. Protoc. Mol. Biol. 97:10.2A.1‐10.2A.44.
  Gallagher, S., Winston, S.E., Fuller, S.A., and Hurrell, J.G. 2008. Immunoblotting and immunodetection. Curr. Protoc. Mol. Biol. 83:10.8.1‐10.8.28.
  Gether, U. 2000. Uncovering molecular mechanisms involved in activation of G protein‐coupled receptors. Endocr. Rev. 21:90‐113. doi: 10.1210/edrv.21.1.0390.
  Good, N.E. and Izawa S. 1972. Hydrogen ion buffers. Methods Enzymol. 24:53‐68. doi: 10.1016/0076‐6879(72)24054‐X.
  Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S., and Singh, R.M. 1966. Hydrogen ion buffers for biological research. Biochemistry 5:467‐477. doi: 10.1021/bi00866a011.
  Hall, J.L. and Moore, A.L. 1983. Isolation of Membranes. Academic Press, New York.
  Heese, A., Hann, D.R., Gimenez‐Ibanez, S., Jones, A.M., He, K., Li, J., Schroeder, J.I., Peck, S.C., and Rathjen, J.P. 2007. The receptor‐like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. U.S.A. 104:12217‐12222. doi: 10.1073/pnas.0705306104.
  Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J.D., Shirasu, K., Menke, F., Jones, A., and Zipfel, C. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR‐associated kinase BIK1 during plant immunity. Mol. Cell 54:43‐55. doi: 10.1016/j.molcel.2014.02.021.
  Kalipatnapu, S. and Chattopadhyay, A. 2005. Membrane protein solubilization: Recent advances and challenges in solubilization of serotonin1A receptors. IUBMB Life 57:505‐512. doi: 10.1080/15216540500167237.
  Korasick, D.A., McMichael, C., Walker, K.A., Anderson, J.C., Bednarek, S.Y., and Heese, A. 2010. Novel functions of Stomatal Cytokinesis‐Defective 1 (SCD1) in innate immune responses against bacteria. J. Biol. Chem. 285:23342‐23350. doi: 10.1074/jbc.M109.090787.
  Larsson, C., Sommarin, M., and Widell, S. 1994. Isolation of highly purified plasma membranes and the separation of inside‐out and right‐side‐out vesicles. Methods Enzymol. 228:451‐469. doi: 10.1016/0076‐6879(94)28046‐0.
  Li, L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X., Wang, Y., Chen, S., and Zhou, J.M. 2014. The FLS2‐associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15:329‐338. doi: 10.1016/j.chom.2014.02.009.
  Malinsky, J., Opekarova, M., Grossmann, G., and Tanner, W. 2013. Membrane microdomains, rafts, and detergent‐resistant membranes in plants and fungi. Annu. Rev. Plant Biol. 64:501‐529. doi: 10.1146/annurev‐arplant‐050312‐120103.
  May, M.J. and Leaver, C.J. 1993. Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol. 103:621‐627. doi: 10.1104/pp.103.2.621.
  Mescher, M.F., Jose, M.J., and Balk, S.P. 1981. Actin‐containing matrix associated with the plasma membrane of murine tumour and lymphoid cells. Nature 289:139‐144. doi: 10.1038/289139a0.
  Michelsen, U. and von Hagen, J. 2009. Isolation of subcellular organelles and structures. Methods Enzymol. 463:305‐328. doi: 10.1016/S0076‐6879(09)63019‐6.
  Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 15:473‐497. doi: 10.1111/j.1399‐3054.1962.tb08052.x.
  Nuhse, T.S., Stensballe, A., Jensen, O.N., and Peck, S.C. 2004. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394‐2405. doi: 10.1105/tpc.104.023150.
  Nuhse, T.S., Bottrill, A.R., Jones, A.M., and Peck, S.C. 2007. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J. 51:931‐940. doi: 10.1111/j.1365‐313X.2007.03192.x.
  Payrastre, B., van Bergen en Henegouwen, P.M., Breton, M., den Hartigh, J.C., Plantavid, M., Verkleij, A.J., and Boonstra, J. 1991. Phosphoinositide kinase, diacylglycerol kinase, and phospholipase C activities associated to the cytoskeleton: Effect of epidermal growth factor. J. Cell Biol. 115:121‐128. doi: 10.1083/jcb.115.1.121.
  Reynolds, G.D., August, B., and Bednarek, S.Y. 2014. Preparation of enriched plant clathrin‐coated vesicles by differential and density gradient centrifugation. Methods Mol. Biol. 1209:163‐177. doi: 10.1007/978‐1‐4939‐1420‐3_13.
  Robatzek, S. and Wirthmueller, L. 2013. Mapping FLS2 function to structure: LRRs, kinase and its working bits. Protoplasma 250:671‐681. doi: 10.1007/s00709‐012‐0459‐6.
  Stoll, V.S. and Blanchard, J.S. 2009. Buffers: Principles and practice. Methods Enzymol. 463:43‐56. doi: 10.1016/S0076‐6879(09)63006‐8.
  Watts, R.G., Deaton, J.D., and Howard, T.H. 1995. Dynamics of triton‐insoluble and triton‐soluble F‐actin pools in calcium‐activated human polymorphonuclear leukocytes: Evidence for regulation by gelsolin. Cell Motil. Cytoskeleton 30:136‐145. doi: 10.1002/cm.970300205.
  Zhang, Z.J. and Peck, S.C. 2011. Simplified enrichment of plasma membrane proteins for proteomic analyses in Arabidopsis thaliana. Proteomics 11:1780‐1788. doi: 10.1002/pmic.201000648.
PDF or HTML at Wiley Online Library