Generation of Maize (Zea mays) Doubled Haploids via Traditional Methods

Kimberly Vanous1, Adam Vanous1, Ursula K. Frei1, Thomas Lübberstedt1

1 Department of Agronomy, Iowa State University, Ames
Publication Name:  Current Protocols in Plant Biology
Unit Number:   
DOI:  10.1002/cppb.20050
Online Posting Date:  June, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Commercial maize hybrid production has corroborated the usefulness of producing inbred lines; however, the delivery of new lines has always been a major time constraint in breeding programs. Traditional methods for developing inbred lines typically require 6 to 10 generations of self‐pollination to obtain sufficient homozygosity. To bypass the time and costs associated with the development of inbred lines, doubled haploid (DH) systems have been widely adopted in the commercial production of maize. Within just two generations, DH systems can create completely homozygous and homogeneous lines. A typical maize DH system, utilizing anthocyanin markers R1‐nj or Pl1 for haploid selection, is described in this protocol. © 2017 by John Wiley & Sons, Inc.

Keywords: doubled haploids; maize; haploid selection

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Generation of Maize Doubled Haploids
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Generation of Maize Doubled Haploids

  • Donor population (female parent)
  • Maternal in vivo haploid inducer genotype (male parent) containing R1‐nj
  • Colchicine
  • Dimethyl sulfoxide (DMSO)
  • Germination and potting equipment including:
    • Pots
    • Plug trays
    • Soils
  • 1‐ml syringes with 25‐G needles for injection of colchicine solution
  • Access to a greenhouse
  • Pollination equipment including:
    • Shoot and tassel bags
    • Garden snips
NOTE: A full list of inducers can be found in Liu et al. ( ).
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Barow, M. (2006). Endopolyploidy in seed plants. BioEssays, 28, 271–281. doi: 10.1002/bies.20371.
   Briggs, R. W. (1966). Recognition and classification of some genetic traits in maize. The Journal of Heredity, 57, 35–42. doi: 10.1093/oxfordjournals.jhered.a107460.
   Chang, M. T. , & Coe, E. H. (2009). Doubled haploids. In A. L. Kriz and A. Larkins (Eds.) Biotechnology in agriculture and forestry (Vol. 63. Molecular Genetic Approaches to Maize Improvement, pp. 127‐142). Verlag, Berlin, Heidelberg: Springer.
   Chase, S. S. (1969). Monoploids and monoploid‐derivatives of maize (Zea mays L.). The Botanical Review, 35, 117–167. doi: 10.1007/BF02858912.
   Chase, S. S. , & Nanda, D. K. (1965). Screening for monoploids of maize by use of a purple embryo marker. Maize Genetics Cooperation Newsletter, 39, 59–60.
   Chen, S. J. , & Song, T. M. (2003). Identification haploid with high oil xenia effect in maize. Acta Agronomica Sinica, 294, 587–590.
   Chen, S. , Li, L. , and Li, H. (2009). Maize doubled haploid breeding [in Chinese]. Beijing: China Agricultural University Press.
   Coe, E. H. (1959). A line of maize with high haploid frequency. American Naturalist, 93, 381–382. doi: 10.1086/282098.
   Coe, E. H. (1994). Anthocyanin genetics. In M. Freeling & V. Walbot (Eds.), The maize handbook (pp. 279‐281). New York: Springer‐Verlag.
   Coe, E. H. , Neuffer, M. G. , & Hoisington, D. A. (1988). The genetics of corn. In G. F. Sprague & J. W. Dudley (Eds.) Corn and corn improvement (pp. 81‐258). Madison, WI: American Society of Agronomy.
   Deimling, S. , Röber, F. K. , & Geiger, H. H. , 1997. Methodik und Genetik der in‐vivo‐Haploideninduktion bei Mais. Vortr. Pflanzenzüchtung, 38, 203–224.
   Dieu, E. , & Beckert, M. (1986). Further studies and androgenetic embryo production and plant regeneration from in vitro cultured anthers in maize (Zea mays L.). Maydica, 31, 245–259.
   Eder, J. , & Chalyk, S. T. (2002). In vivo haploid induction in maize. Theoretical and Applied Genetics, 104, 703–708. doi: 10.1007/s00122‐001‐0773‐4.
   Emerson, R. A. (1921). The genetic relations of plant colors in maize. Cornell University Agricultural Experiment Station Memoir, 39, 1–156.
   Evans, M. M. S. (2007). The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell, 19, 46–62. doi: 10.1105/tpc.106.047506.
   Geiger, H. H. , & Gordillo, G. A. (2009). Doubled haploids in hybrid maize breeding. Maydica, 54, 485–499.
   Genovesi, A. D. , & Collins, G. B. (1982). In vitro production of haploid plants of corn via anther culture. Crop Science, 22, 1137–1144. doi: 10.2135/cropsci1982.0011183X002200060013x.
   Greenblatt, I. M. , & Bock, M. (1967). A commercially desirable procedure for detection of monoploids in maize. The Journal of Heredity, 58, 9–13. doi: 10.1093/oxfordjournals.jhered.a107543.
   Hallauer, A. R. , Carena, M. J. , & Miranda Filho, J. B. (2010). Quantitative genetics in maize breeding. New York: Springer.
   Häntzschel, K. R. , & Weber, G. (2010). Blockage of mitosis in maize root tips using colchicine‐alternatives. Protoplasma, 241, 99–104. doi: 10.1007/s00709‐009‐0103‐2.
   Kato, A. (2002). Chromosome doubling of haploid maize seedlings using nitrous oxide gas at the flower primordial stage. Plant Breed, 121, 370–377. doi: 10.1046/j.1439‐0523.2002.743321.x.
   Kermicle, J. L. (1969). Androgenesis conditioned by a mutation in maize. Science, 166, 1422–1424. doi: 10.1126/science.166.3911.1422.
   Kermicle, J. L. (1971). Pleiotropic effects on seed development of the indeterminate gametophyte gene in maize. American Journal of Botany, 58, 1–7. doi: 10.2307/2441299.
   Kermicle, J. L. (1994). Indeterminate gametophyte (ig): Biology and use . In M. Freeling and V. Walbot (Eds.), The maize handbook (pp. 388‐393). New York: Springer‐Verlag.
   Kuo, C. S. , Sun, A. C. , Wang, Y. Y. , Gui, Y. L. , Gu, S. R. , & Miao, S. H. (1978). Studies on induction of pollen plants and androgenesis in maize. Acta Botanica Sinica, 20, 204–209.
   Lashermes, P. , & Beckert, M. (1988). Genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theoretical and Applied Genetics, 76, 404–410. doi: 10.1007/BF00265341.
   Liu, Z. , Wang, Y. , Ren, J. , Mei, M. , Frei, U. K. , Trampe, B. , and Lübberstedt, T. (2016). Maize doubled haploids. In J. Janick (Ed.), Plant breeding reviews (Vol. 40, pp. 123–160). Wiley‐Blackwell. ISBN: 978‐1‐119‐27968‐6.
   Maluszynski, M. , Kasha, K. J. , Forster, B. P. , & Szarejko, I. (2003). Doubled haploid production in crop plants: A manual. Dordrecht, Netherlands: Kluwer Academic Publishers. ISBN: 1‐4020‐1544‐5.
   Nanda, D. K. , & Chase, S. S. (1966). An embryo marker for detecting monoploids of maize (Zea mays L.). Crop Science, 6, 213–215. doi: 10.2135/cropsci1966.0011183X000600020036x.
   Neild, R. E. , & Newman, J. E. (1990). Growing season characteristics and requirements in the corn belt. West Lafayette, IN: National Corn Handbook, Purdue University, Cooperative Extension Service.
   Neuffer, M. G. , Coe, E. H. , & Wessler, A. R. (1997). Mutants of maize. New York: CSHL Press.
   Nielsen, R. L. (2001). Grain Fill Stages in Corn. Purdue University.
   Petolino, J. F. , & Jones, A. M. (1986). Anther Culture of Elite Genotypes of Maize1. Crop Science, 26, 1072–1074. doi: 10.2135/cropsci1986.0011183X002600050048x.
   Pollacsek, M. (1992). Management of the ig gene for haploid induction in maize. Agronomie, 12, 247–251. doi: 10.1051/agro:19920304.
   Prigge, V. , Sánchez, C. , Dhillon, B. S. , Schipprack, W. , Araus, J. L. , Bänziger, M. , & Melchinger, A. E. (2011). Doubled haploids in tropical maize. I. Effects of inducers and source germplasm on in vivo haploid induction rates. Crop Science, 51, 1498–1506. doi: 10.2135/cropsci2010.10.0568.
   Röber, F. K. , Gordillo, G. A. , & Geiger, H. H. (2005). In vivo haploid induction in maize–performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica, 50, 275–283.
   Sastry, G. R. K. , 1970. Paramutation and mutation of R‐ch in maize. Theoretical and Applied Genetics, 40, 185–190. doi: 10.1007/BF00282701.
   Schmidt, W. (2003). Hybrid maize breeding at KWS SAAT AG. In Bericht über die Arbeitstagung der Vereinigung der Pflanzenz üchter und Saatgutkaufleute Österreichs (pp. 1–6). Österreich: Gumpenstein.
   Schneerman, M. C. , Charbonneau, M. , & Weber, D. F. (2000). A survey of ig containing materials. Maize Genetics Cooperation Newsletter, 74, 92–93.
   Seitz, G. (2005). The use of doubled haploids in corn breeding. In Proc. 41st Annual Illinois Corn Breeders’ School 2005 (pp. 1–7). Illinois: Urbana‐Champaign.
   Shatskaya, O. A. , Zabirova, E. R. , Shcherbak, V. S. , & Chumak, M. V. (1994). Mass induction of maternal haploids. Maize Genetics Cooperation Newsletter, 68, 51.
   Shull, G. H. (1908). The composition of a field of maize. American Brahman Breeders Association. Reports, 4, 296–301. doi: org/10.1093/jhered/os‐4.1.296.
   Shull, G. H. (1909). A pure line method of corn breeding. American Brahman Breeders Association. Reports, 5, 51–59.
   Vanous, A. E. (2011). Optimization of doubled haploid production in maize (Zea mays L.). Master's thesis, Iowa State University.
   Zabirova, E. R. , Chumak, M. V. , Shatskaia, O. A. , & Scherbak, V. S. (1996). Technology of the mass accelerated production of homozygous lines (in Russian). Kukuruza Sorgo, N4, 17–19.
PDF or HTML at Wiley Online Library