Extracellular Alkalinization Assay for the Detection of Early Defense Response

Natalia Moroz1, Alisa Huffaker2, Kiwamu Tanaka1

1 Department of Plant Pathology, Washington State University, Pullman, Washington, 2 Section of Cell & Developmental Biology, University of California San Diego, La Jolla, California
Publication Name:  Current Protocols in Plant Biology
Unit Number:   
DOI:  10.1002/cppb.20057
Online Posting Date:  September, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Plant recognition of invading organisms occurs through identification of foreign molecules associated with attackers and of self‐derived, damage‐associated molecules. Perception of these molecules activates signaling processes including dynamic changes in ion balance, production of second messengers such as reactive oxygen species and nitric oxide, increased levels of plant hormones, and map kinase cascade activation. Together these signaling events stimulate transcriptional changes to initiate plant defense responses. Among the earliest detectable signaling events is a rapid increase in apoplastic pH, i.e., extracellular alkalinization. Here, an assay for quantification of this alkalinization response using suspension‐cultured cell lines for Arabidopsis, potato, and maize is described. This assay is an inexpensive, fast, simple, and reproducible method to quantify defense signaling output, providing a powerful tool for evaluating early plant responses to elicitors and pathogens. Results from the alkalinization assay are comparable to other more costly and time‐consuming methods for assessing defense signaling, such as measurement of the oxidative burst, calcium influx, and marker gene expression. This bioassay is a quantitative and robust method for evaluation of plant defense output. © 2017 by John Wiley & Sons, Inc.

Keywords: arabidopsis; culture; early defense response; extracellular alkalinization; maize; potato; suspension cell

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Suspension Cell Culture Preparation
  • Basic Protocol 2: Measurement of Extracellular Alkalinization
  • Basic Protocol 3: Calculation and Analysis of Extracellular Alkalinization
  • Support Protocol 1: Recovery of Suspension Culture from Callus
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Suspension Cell Culture Preparation

  Materials
  • For Arabidopsis suspension culture:
  • Arabidopsis suspension cells T87 (Arabidopsis Biological Resource Center, ABRC: https://abrc.osu.edu/cell‐culture)
  • Sterile NT‐1 medium, pH 5.8 (see recipe)
  • 22° to 26°C orbital incubator shaker (130 rpm)
  • For potato suspension culture:
  • Potato suspension cells derived from potato tubers (Solanum tuberosum L. cv. Russet Burbank)
  • Sterile Murashige and Skoog (MS) medium, pH 5.8 (see recipe)
  • 23°C orbital incubator shaker (130 rpm)
  • For maize suspension culture:
  • Maize suspension‐cultured cells derived from endosperm (Zea mays var. Black Mexican Sweet; Chourey & Zurawski, )
  • Sterile MS + 2,4‐D, pH 5.6 (see recipe)
  • 25°C orbital incubator shaker (130 rpm)
  • Laminar flow hood (for suspension cell transfer)
  • 250‐ml sterile glass conical flasks with plastic or metal lids
  • Aluminum foil

Basic Protocol 2: Measurement of Extracellular Alkalinization

  Materials
  • Suspension cell culture (from protocol 1)
  • Elicitor(s) solutions and/or pathogen(s) suspensions (see reciperecipes)
  • MS or NT‐1 liquid medium (see recipe)
  • Autoclaved water
  • Automatic pipettors
  • Sterile 24‐well plates
  • Sterile, wide‐bore glass pipets or precut tips
  • Tabletop rotary shaker (180 rpm)
  • pH meter with an electrode

Basic Protocol 3: Calculation and Analysis of Extracellular Alkalinization

  Materials
  • Computer with spreadsheet software (e.g., KaleidaGraph and Microsoft Excel)

Support Protocol 1: Recovery of Suspension Culture from Callus

  Materials
  • Callus
  • MS or NT‐1 solid medium (see recipe)
  • MS or NT‐1 liquid medium (see recipe)
  • Plant growth chamber (Conviron)
  • Sterile Petri dishes (Fisherbrand, cat. no. FB0875712, 100 × 15–mm or Olympus Plastics, cat. no. 32‐107G, 90‐mm diameter)
  • Tweezers, sterile
  • Laminar flow hood
  • Alcohol lamp
  • 250‐ml flasks and lids, sterile
  • Aluminum foil
  • 23°C orbital shaker
  • Surgical tape
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Atkinson, N. J. & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany, 63, 3523–3543. doi: 10.1093/jxb/ers100.
  Chang, X. & Nick, P. (2012). Defence signaling triggered by Flg22 and Harpin is integrated into a different stilbene output in Vitis cells. PloS One, 7, e40446. doi: 10.1371/journal.pone.0040446.
  Chen, Y. C., Siems, W. F., Pearce, G., & Ryan, C. A. (2008). Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. Journal of Biological Chemistry, 283, 11469–11476. doi: 10.1074/jbc.M709002200.
  Chourey, P. S. & Zurawski, D. B. (1981). Callus formation from protoplasts of a maize cell culture. Theoretical Applied Genetics, 59, 341–344. doi: 10.1007/BF00276446.
  Felix, G., Duran, J. D., Volko, S., & Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 18, 265–276. doi: 10.1046/j.1365‐313X.1999.00265.x.
  Felle, H. H. (2001). pH: Signal and messenger in plant cells. Plant Biology, 3, 577–591. doi: 10.1055/s‐2001‐19372.
  Hancock, J. T., Desikan, R., & Neill, S. J. (2001). Role of reactive oxygen species in cell signaling pathways. Biochemical Society Transactions, 29, 345–350. doi: 10.1042/bst0290345.
  Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B., & Sussman, M. R. (2014). A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science, 343, 408–411. doi: 10.1126/science.1244454.
  Huffaker, A., Pearce, G., & Rya, C. A. (2006). An endogenous peptide signal in Arabidopsis activates components of the innate immune response. PNAS, 103, 10098–10103. doi: 10.1073/pnas.0603727103.
  Jeworutzki, E., Roelfsema, M. R., Anschutz, U., Krol, E., Elzenga, J. T., Felix, G., … Becker, D. (2010). Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca‐associated opening of plasma membrane anion channels. The Plant Journal, 62, 367–378. doi: 10.1111/j.1365‐313X.2010.04155.x.
  Jones, J. D. & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329. doi: 10.1038/nature05286.
  Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., & Felix, G. (2004). The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell, 16, 3496–3507. doi: 10.1105/tpc.104.026765.
  Law, R. D., & Suttle, J. C. (2005). Chromatin remodeling in plant cell culture: Patterns of DNA methylation and histone H3 and H4 acetylation vary during growth of asynchronous potato cell suspensions. Plant Physiology and Biochemistry, 43, 527–534. doi: 10.1016/j.plaphy.2005.03.014.
  Manzoor, H., Chiltz, A., Madani, S., Vatsa, P., Schoefs, B., Pugin, A., & Garcia‐Brugger, A. (2012). Calcium signatures and signaling in cytosol and organelles of tobacco cells induced by plant defense elicitors. Cell Calcium, 51, 434–444. doi: 10.1016/j.ceca.2012.02.006.
  Masachis, S., Segorbe, D., Turra, D., Leon‐Ruiz, M., Furst, U., Ghalid, M. E.l, … Di Pietro, A. (2016). A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nature Microbiology, 1, 1–8. doi: 10.1038/nmicrobiol.2016.43.
  Meindl, T., Boller, T., & Felix, G. (1998). The plant wound hormone systemin binds with the N‐terminal part to its receptor but needs the C‐terminal part to activate it. Plant Cell, 10, 1561–1570. doi: 10.1105/tpc.10.9.1561.
  Moroz, N., Fritch, K. R., Marcec, M. J., Tripathi, D., Smertenko, A., & Tanaka, K. (2017). Extracellular alkalinization as a defense response in potato cells. Frontiers in Plant Science, 8, 32. doi: 10.3389/fpls.2017.00032.
  Navazio, L., Moscatiello, R., Genre, A., Novero, M., Baldan, B., Bonfante, P., & Mariani, P. (2007). A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiology, 144, 673–681. doi: 10.1104/pp.106.086959.
  Pearce, G., Bhattacharya, R., Chen, Y. C., Barona, G., Yamaguchi, Y., & Ryan, C. A. (2009). Isolation and characterization of hydroxyproline‐rich glycopeptide signals in black nightshade leaves. Plant physiology, 150, 1422–1433. doi: 10.1104/pp.109.138669.
  Pearce, G., & Ryan, C. A. (2003). Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense‐signaling glycopeptide hormones coded in a single precursor gene. Journal of Biological Chemistry, 278, 30044–30050. doi: 10.1074/jbc.M304159200.
  Pearce, G., Yamaguchi, Y., Munske, G., & Ryan, C. A. (2008). Structure‐activity studies of AtPep1, a plant peptide signal involved in the innate immune response. Peptides, 29, 2083–2089. doi: 10.1016/j.peptides.2008.08.019.
  Pearce, G., Yamaguchi, Y., Munske, G., & Ryan, C. A. (2010). Structure‐activity studies of RALF, Rapid Alkalinization Factor, reveal an essential – YISY – motif. Peptides, 31, 1973–1977. doi: 10.1016/j.peptides.2010.08.012.
  Petre, B., Hecker, A., Germain, H., Tsan, P., Sklenar, J., Pelletier, G., … Rouhier, N. (2016). The Poplar Rust‐Induced Secreted Protein (RISP) Inhibits the Growth of the Leaf Rust Pathogen Melampsora larici‐populina and Triggers Cell Culture Alkalinisation. Frontiers in Plant Science, 7, 97. doi: 10.3389/fpls.2016.00097.
  Rivero, L., Scholl, R., Holomuzki, N., Crist, D., Grotewold, E., & Brkljacic, J. (2014). Handling Arabidopsis plants: Growth, preservation of seeds, transformation, and genetic crosses. Methods in Molecular Biology, 1062, 3–25. doi: 10.1007/978‐1‐62703‐580‐4_1.
  Schaller, A., & Oecking, C. (1999). Modulation of plasma membrane H+‐ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell, 11, 263–272.
  Scheer, J. M., Pearce, G., & Ryan, C. A. (2003). Generation of systemin signaling in tobacco by transformation with the tomato systemin receptor kinase gene. PNAS, 100, 10114–10117. doi: 10.1073/pnas.1432910100.
  Stegmann, M., Monaghan, J., Smakowska‐Luzan, E., Rovenich, H., Lehner, A., Holton, N., … Zipfel, C. (2017). The receptor kinase FER is a RALF‐regulated scaffold controlling plant immune signaling. Science, 355, 287–289. doi: 10.1126/science.aal2541.
  van der Luit, A. H., Piatti, T., van Doorn, A., Musgrave, A., Felix, G., Boller, T., & Munnik, T. (2000). Elicitation of suspension‐cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiology, 123, 1507–1516. doi: 10.1104/pp.123.4.1507.
  Wu, S., Shan, L., & He, P. (2014). Microbial signature‐triggered plant defense responses and early signaling mechanisms. Plant Science, 228, 118–126. doi: 10.1016/j.plantsci.2014.03.001.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library