Medicago truncatula: Genetic and Genomic Resources

Marie Garmier1, Laurent Gentzbittel2, Jiangqi Wen3, Kirankumar S. Mysore3, Pascal Ratet1

1 Institute of Plant Sciences Paris‐Saclay, Université Paris Diderot, Université Sorbonne Paris‐Cité, Orsay, 2 EcoLab, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National Polytechnique de Toulouse, Université Paul Sabatier, Castanet‐Tolosan, 3 Noble Research Institute, Ardmore, Oklahoma
Publication Name:  Current Protocols in Plant Biology
Unit Number:   
DOI:  10.1002/cppb.20058
Online Posting Date:  December, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Medicago truncatula was chosen by the legume community, along with Lotus japonicus, as a model plant to study legume biology. Since then, numerous resources and tools have been developed for M. truncatula. These include, for example, its genome sequence, core ecotype collections, transformation/regeneration methods, extensive mutant collections, and a gene expression atlas. This review aims to describe the different genetic and genomic tools and resources currently available for M. truncatula. We also describe how these resources were generated and provide all the information necessary to access these resources and use them from a practical point of view. © 2017 by John Wiley & Sons, Inc.

Keywords: genomics; genome sequence; genetic diversity; insertion mutagenesis; medicago truncatula; mutagenesis

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Natural Genetic Diversity: World‐Wide Locations of M. truncatula Samples
  • M. truncatula Genetic Diversity Resources
  • Use of Core Collections to Manage Biodiversity
  • The HapMap Project for Population Genomics and Genome‐Wide Association Studies
  • QTL Analyses Using Genetic Maps from Recombinant Inbred Lines Populations
  • Plant Manipulation
  • Conclusions and Perspectives
  • Acknowledgements
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

  Abdallah, N. A., Prakash, C. S., & McHughen, A. G. (2015). Genome editing for crop improvement: Challenges and opportunities. GM Crops Food, 6, 183–205. doi: 10.1080/21645698.2015.1129937.
  Abdelguerfi, A., Chapot, J. Y., & Conesa, A. P. (2008). Contribution à l’étude de la répartition des luzernes annuelles spontanées en Algérie selon certains facteurs du milieu. [On the distribution of spontaneous annual medicks in Algeria according to certain environmental factors] Fourrages, 113, 89–106.
  Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H., Shinn, P., … Ecker, J. R. (2003). Genome‐wide insertional mutagenesis of Arabidopsis thaliana. Science, 301, 653–657. doi: 10.1126/science.1086391.
  Ameline‐Torregrosa, C., Cazaux, M., Danesh, D., Chardon, F., Cannon, S. B., Esquerré‐Tugayé, M.‐T., … Jacquet, C. (2008). Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. Molecular Plant‐Microbe Interactions, 21, 61–69. doi: 10.1094/MPMI‐21‐1‐0061.
  Anonymous. (1972). Medicago truncatula Gaertn. var. truncatula (barrel medic). In C. Barnard (Ed.) Register of Australian Herbage Plant Cultivars, (2nd ed.). Canberra, Australia: Commonwealth Scientific and Industrial Research Organization.
  Arraouadi, S., Badri, M., Abdelly, C., Huguet, T., & Aouani, M. E. (2012). QTL mapping of physiological traits associated with salt tolerance in Medicago truncatula Recombinant Inbred Lines. Genomics, 99, 118–125. doi: 10.1016/j.ygeno.2011.11.005.
  Arraouadi, S., Chardon, F., Huguet, T., Aouani, M. E., & Badri, M. (2011). QTLs mapping of morphological traits related to salt tolerance in Medicago truncatula. Acta Physiologiae Plantarum, 33, 917–926. doi: 10.1007/s11738‐010‐0621‐8.
  Atwell, S., Huang, Y. S., Vilhjalmsson, B. J., Willems, G., Horton, M., Li, Y., … Nordborg, M. (2010). Genome‐wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines. Nature, 465, 627–631. doi: 10.1038/nature08800.
  Avia, K., Pilet‐Nayel, M.‐L., Bahrman, N., Baranger, A., Delbreil, B., Fontaine, V., … Lejeune‐Hénaut, I. (2013). Genetic variability and QTL mapping of freezing tolerance and related traits in Medicago truncatula. Theoretical and Applied Genetics, 126, 2353–2366. doi: 10.1007/s00122‐013‐2140‐7.
  Badri, M., Arraouadi, S., Huguet, T., & Aouani, M. E. (2013). Comparative effects of water deficit on Medicago laciniata and Medicago truncatula lines sampled from sympatric populations. Journal of Plant Breeding and Crop Science, 2, 259–266.
  Badri, M., Chardon, F., Huguet, T., & Aouani, M. E. (2011). Quantitative trait loci associated with drought tolerance in the model legume Medicago truncatula. Euphytica, 181, 415–428. doi: 10.1007/s10681‐011‐0473‐3.
  Badri, Y., Zribi, K., Badri, M., Huguet, T., van Berkum, P., & Aouani, M. E. (2007). Comparison of rhizobia that nodulate Medicago laciniata and Medicago truncatula present in a single Tunisian arid soil. Canadian Journal of Microbiology, 53, 277–283. doi: 10.1139/w06‐130.
  Ben, C., Debellé, F., Berges, H., Bellec, A., Jardinaud, M.‐F., Anson, P., … Vailleau, F. (2013). MtQRRS1, an R‐locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum. New Phytologist, 199, 758–772. doi: 10.1111/nph.12299.
  Ben, C., Toueni, M., Montanari, S., Tardin, M.‐C., Fervel, M., Negahi, A., … Gentzbittel, L. (2013). Natural diversity in the model legume Medicago truncatula allows identifying distinct genetic mechanisms conferring partial resistance to Verticillium wilt. Journal of Experimental Botany, 64, 317–332. doi: 10.1093/jxb/ers337.
  Benedito, V. A., Torez‐Jerez, I., Murray, J., Andriankaja, A., Allen, S., Kakar, K., … Udvardi, M. (2008). A gene expression atlas of the model legume Medicago truncatula. Plant Journal, 55, 504–513. doi: 10.1111/j.1365‐313X.2008.03519.x.
  Benlloch, R., d'Erfurth, I., Ferrandiz, C., Cosson, V., Beltran, J. P., Canas, L. A., … Ratet, P. (2006). Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1‐like functions in Legumes. Plant Physiology, 142, 972–983. doi: 10.1104/106.083543.
  Berg, J. J., & Coop, G. (2014). A population genetic signal of polygenic adaptation. PLoS Genetics, 10, e1004412. doi: 10.1371/journal.pgen.1004412.
  Bibikova, M., Golic, M., Golic, K. G., & Carroll, D. (2002). Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc‐finger nucleases. Genetics, 161, 1169–1175.
  Blondon, F., Marie, D., Brown, S., & Kondorosi, A. (1994). Genome size and base composition in Medicago sativa and M. truncatula species. Genome, 37, 264–270. doi: 10.1139/g94‐037.
  Boisson‐Dernier, A., Chabaud, M., Garcia, F., Bécard, G., Rosenberg, C., & Barker, D. G. (2001). Hairy roots of Medicago truncatula as tools for studying nitrogen‐fixing and endomycorrhizal symbioses. Molecular Plant‐Microbe Interactions, 14, 693–700. doi: 10.1094/MPMI.2001.14.6.695.
  Bolingue, W., Ly Vu, B., Leprince, O., & Buitink, J. (2010). Characterization of dormancy behaviour in seeds of the model legume Medicago truncatula. Seed Science Research, 20, 97–107. doi: 10.1017/S0960258510000061.
  Bonhomme, M., André, O., Badis, Y., Ronfort, J., Burgarella, C., Chantret, N., … Jacquet, C. (2014). High‐density genome‐wide association mapping implicates an F‐box encoding gene in Medicago truncatula resistance to Aphanomyces euteiches. New Phytologist, 201, 1328–1342. doi: 10.1111/nph.12611.
  Bonhomme, M., Boitard, S., San Clemente, H., Dumas, B., Young, N., & Jacquet, C. (2015). Genomic signature of selective sweeps illuminates adaptation of Medicago truncatula to root‐associated microorganisms. Molecular Biology and Evolution, 32, 2097–2110. doi: 10.1093/molbev/msv092.
  Branca, A., Paape, T. D., Zhou, P., Briskine, R., Farmer, A. D., Mudge, J., … Tiffin, P. (2011). Whole‐genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 108, E864–E870. doi: 10.1073/pnas.1104032108.
  Brand, T. S., Cloete, W. P. T., De Villiers, T. T., & Franck, F. (1991). Nutritive evaluation of Medicago truncatula (cv. Jemalong) pasture for sheep. I. Seasonal influences on the chemical composition and digestibility of pasture. South African Journal of Animal Science, 21, 88–94.
  Brocard, L., Schultze, M., Kondorosi, A., & Ratet, P. (2006). T‐DNA mutagenesis in the model plant Medicago truncatula: Is it efficient enough for legume molecular genetics? CAB Reviews: Perspectives in Agriculture, Veterinary Sciences, Nutrition and Natural Resources, 1, 1–7.
  Brown, A. H. D. (1989). Core collections: A practical approach to genetic resources management. Genome, 31, 818–824. doi: 10.1139/g89‐144.
  Burgarella, C., Chantret, N., Gay, L., Prosperi, J.‐M., Bonhomme, M., Tiffin, P., … Ronfort, J. (2016). Adaptation to climate through flowering phenology: A case study in Medicago truncatula. Molecular Ecology, 25, 3397–3415. doi: 10.1111/mec.13683.
  Carelli, M., Calderini, O., Panara, F., Porceddu, A., Losini, I., Piffanelli, P., … Scotti, C. (2013). Reverse genetics in Medicago truncatula using a TILLING mutant collection. Methods in Molecular Biology, 1069, 101–118. doi: 10.1007/978‐1‐62703‐613‐9_9.
  Chabaud, M., Boisson‐Dernier, A., Zhang, J., Taylor, C. G., Yu, O., & Barker, D. G. (2006). Agrobacterium rhizogenes‐mediated root transformation. In U. Mathesius, E.‐P. Journet, & L. W. Sumner (Eds.), The Medicago truncatula handbook (pp. 1‐8). Ardmore, OK: Noble Research Institute.
  Chabaud, M., de Carvalho Niebel, F., & Barker, D. G. (2003). Efficient transformation of Medicago truncatula cv Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Reports, 22, 46–51. doi: 10.1007/s00299‐003‐0649‐y.
  Chabaud, M., Larsonneau, C., Marmouget, C., & Huguet, T. (1996). Transformation of barrel medic (Medicago truncatula Gaertn.) by Agrobacterium tumefaciens and regeneration via somatic embryogenesis of transgenic plants with the MtENOD12 nodulin promoter fused to the gus reporter gene. Plant Cell Reports, 15, 305–310. doi: 10.1007/BF00232361.
  Chabaud, M., Lichtenzveig, J., Ellwood, S., Pfaff, T., & Journet, E.‐P. (2006). Vernalization, crossings and testing for pollen viability. In U. Mathesius, E.‐P. Journet, & L. W. Sumner (Eds.), The Medicago truncatula handbook (pp. 1‐13). Ardmore, OK: Noble Research Institute.
  Chabaud, M., Ratet, P., de Sousa Araújo, S., Roldão Lopes Amaral Duque, A. S., Harrison, M., & Barker, D. G. (2007). Agrobacterium tumefaciens‐mediated transformation and in vitro plant regeneration of M. truncatula. In U. Mathesius, E.‐P. Journet, & L. W. Sumner (Eds.), The Medicago truncatula handbook (pp. 1‐34). Ardmore, OK: Noble Research Institute.
  Cheng, X., Krom, K., Zhang, S., Mysore, K. S., Udvardi, M. K., & Wen, J. (2017). Enabling reverse genetics in Medicago truncatula using high throughput sequencing for Tnt1 flanking sequence recovery. Methods in Molecular Biology, 1610, 25–37. doi: 10.1007/978‐1‐4939‐7003‐2_3.
  Cheng, X., Peng, J., Ma, J., Tang, Y., Chen, R., Mysore, K. S., & Wen, J. (2012). NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula. New Phytologist, 195, 71–84. doi: 10.1111/j.1469‐8137.2012.04147.x.
  Cheng, X., Wang, M., Lee, H. K., Tadege, M., Ratet, P., Udvardi, M., … Wen, J. (2014). An efficient reverse genetics platform in the model legume Medicago truncatula. New Phytologist, 201, 1065–1076. doi: 10.1111/nph.12575.
  Cheng, X., Wen, J., Tadege, M., Ratet, P., & Mysore, K. S. (2011). Reverse genetics in Medicago truncatula using Tnt1 insertion mutants. Methods in Molecular Biology, 678, 179‐190. doi: 10.1007/978‐1‐60761‐682‐5_13.
  Choi, H.‐K., Kim, D., Uhm, T., Limpens, E., Lim, H., Mun, J.‐H., … Cook, D. R. (2004). A sequence‐based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics, 166, 1463–1502. doi: 10.1534/genetics.166.3.1463.
  Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., … Voytas, D. F. (2010). Targeting DNA double‐strand breaks with TAL effector nucleases. Genetics, 186, 757–761. doi: 10.1534/genetics.110.120717.
  Collier, R., Fuchs, B., Walter, N., Kevin, L. W., & Taylor, C. G. (2005). Ex vitro composite plants: An inexpensive, rapid method for root biology. Plant Journal, 43, 449–457. doi: 10.1111/j.1365‐313X.2005.02454.x.
  Cosson, V., Eschstruth, A., & Ratet, P. (2015). Medicago truncatula transformation using leaf explants. Methods in Molecular Biology, 1223, 43‐56. doi: 10.1007/978‐1‐4939‐1695‐5_4.
  Cosson, V., Durand, P., d'Erfurth, I., Kondorosi, A., & Ratet, P. (2006). Medicago truncatula R108‐1 (c3) Agrobacterium transformation. Methods in Molecular Biology, 343, 115‐127. doi: 10.1385/1‐59745‐130‐4:115.
  Courtial, B., Feuerbach, F., Eberhard, S., Rohmer, L., Chiapello, H., Camilleri, C., & Lucas, H. (2001). Tnt1 transposition events are induced by in vitro transformation of Arabidopsis thaliana, and transposed copies integrate into genes. Molecular Genetics and Genomics, 265, 32–42. doi: 10.1007/s004380000387.
  Crane, C., Wright, E., Dixon, R. A., & Wang, Z.‐Y. (2006). Trangenic Medicago truncatula plants obtained from Agrobacterium tumefaciens transformed roots and Agrobacterium rhizogenes‐transformed hairy roots. Planta, 223, 1344–1354. doi: 10.1007/s00425‐006‐0268‐2.
  Curtin, S. J., Tiffin, P., Guhlin, J., Trujillo, D. I., Burghardt, L. T., Atkins, P., … Young, N. D. (2017). Validating genome‐wide association candidates controlling quantitative variation in nodulation. Plant Physiology, 173, 921–931. doi: 10.1104/pp.16.01923.
  Curtin, S. J., Zhang, F., Sander, J. D., Haun, W. J., Starker, C., Baltes, N. J., … Stupar, R. M. (2011). Targeted mutagenesis of duplicated genes in soybean with zinc‐finger nucleases. Plant Physiology, 156, 466–473. doi: 10.1104/111.172981.
  de Lorenzo, L., Merchan, F., Blanchet, S., Megías, M., Frugier, F., Crespi, M., & Sousa, C. (2007). Differential expression of the TFIIIA regulatory pathway in response to salt stress between Medicago truncatula genotypes. Plant Physiology, 145, 1521–1532. doi: 10.1104/107.106146.
  d'Erfurth, I., Cosson, V., Eschstruth, A., Lucas, H., Kondorosi, A., & Ratet, P. (2003). Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant Journal, 34, 95–106. doi: 10.1046/j.1365‐313X.2003.01701.x.
  Derkaoui, M., Caddel, J. L., & Romman, L. L. (1993). Forage quality in annual Medicago spp. Agricoltura Mediterranea, 123, 86–91.
  Dias, P. M. B., Brunel‐Muguet, S., Dürr, C., Huguet, T., Demilly, D., Wagner, M.‐H., & Teulat‐Merah, B. (2011). QTL analysis of seed germination and pre‐emergence growth at extreme temperatures in Medicago truncatula. Theoretical and Applied Genetics, 122, 429–444. doi: 10.1007/s00122‐010‐1458‐7.
  Djebali, N., Jauneau, A., Ameline‐Torregrosa, C., Chardon, F., Jaulneau, V., Mathe, C., … Jacquet, C. (2009). Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome‐related genes. Molecular Plant‐Microbe Interactions, 22, 1043–1055. doi: 10.1094/MPMI‐22‐9‐1043.
  Ellwood, S. R., D'Souza, N. K., Kamphuis, L. G., Burgess, T. I., Nair, R. M., & Oliver, R. P. (2006). SSR analysis of the Medicago truncatula SARDI core collection reveals substantial diversity and unusual genotype dispersal throughout the Mediterranean basin. Theoretical and Applied Genetics, 112, 977–983. doi: 10.1007/s00122‐005‐0202‐1.
  Endo, M., Nishizawa‐Yokoi, A., & Toki, S. (2016). Targeted mutagenesis in rice using TALENs and the CRISPR/Cas9 system. Methods in Molecular Biology, 1469, 123–135. doi: 10.1007/978‐1‐4939‐4931‐1_9.
  Flint‐Garcia, S. A., Thornsberry, J. M., & Buckler, E. S. (2003). Structure of linkage disequilibrium in Plants. Annual Review of Plant Biology, 54, 357–374. doi: 10.1146/annurev.arplant.54.031902.134907.
  Flor, H. H. (1971). Current status of the gene‐for‐gene concept. Annual Review of Phytopathology, 9, 275–296. doi: 10.1146/annurev.py.09.090171.001423.
  Foroozanfar, M., Exbrayat, S., Gentzbittel, L., Bertoni, G., Maury, P., Naghavi, M. R., … Sarrafi, A. (2014). Genetic variability and identification of quantitative trait loci affecting plant growth and chlorophyll fluorescence parameters in the model legume Medicago truncatula under control and salt stress conditions. Functional Plant Biology, 41, 983–1001. doi: 10.1071/FP13370.
  Friesen, M. L., von Wettberg, E. J., Badri, M., Moriuchi, K. S., Barhoumi, F., Chang, P. L., … Nuzhdin, S. V. (2014). The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula. BMC Genomics, 15, 1160.
  Gaige, A. R., Doerksen, T., & Shuain, B. (2012). Medicago truncatula ecotypes A17 and R108 show variations in jasmonic acid/ethylene induced resistance to Macrophomina phaseolina. Canadian Journal of Plant Pathology, 34, 98–103. doi: 10.1080/07060661.2012.662176.
  Gallardo, K., Le Signor, C., Vandekerckhove, J., Thompson, R. D., & Burstin, J. (2003). Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiology, 133, 664–682. doi: 10.1104/pp.103.025254.
  Gao, Y., Li, X., Tian, Q.‐Y., Wang, B.‐L., & Zhang, W.‐H. (2016). Sulfur deficiency had different effects on Medicago truncatula ecotypes A17 and R108 in terms of growth, root morphology and nutrient contents. Journal of Plant Nutrition, 39, 301–314. doi: 10.1080/01904167.2014.976344.
  Garcia, J., Barker, D. G., & Journet, E.‐P. (2006). Seed storage and germination. In U. Mathesius, E.‐P. Journet, & L. W. Sumner (Eds.), The Medicago truncatula handbook (pp. 1‐9). Ardmore, OK: Noble Research Institute.
  García de la Torre, V. S., Coba de la Peña, T., Lucas, M. M., & Pueyo, J. J. (2013). Rapid screening of Medicago truncatula germplasm for mercury tolerance at the seedling stage. Environmental and Experimental Botany, 91, 90–96. doi: 10.1016/j.envexpbot.2013.03.004.
  Gibson, G. (2012). Rare and common variants: Twenty arguments. Nature Reviews Genetics, 13, 135–145. doi: 10.1038/nrg3118.
  Gil‐Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C. V., Sánchez‐León, S., … Voytas, D. F. (2017). High‐efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant Journal, 89, 1251–1262. doi: 10.1111/tpj.13446.
  Gorton, A. J., Heath, K. D., Pilet‐Nayel, M.‐L., Baranger, A., & Stinchcombe, J. R. (2012). Mapping the genetic basis of symbiotic variation in legume‐rhizobium interactions in Medicago truncatula. G3‐Genes Genomes Genetics, 2, 1291–1303.
  Gourion, B., Bourcy, M., Cosson, V., & Ratet, P. (2013). Protocols for growing plant symbioses; rhizobia. Methods in Molecular Biology, 953, 61‐75. doi: 10.1007/978‐1‐62703‐152‐3_4.
  Grandbastien, M. A., Spielmann, A., & Caboche, M. (1989). Tnt1, a mobile retroviral‐like transposable element of tobacco isolated by plant cell genetics. Nature, 337, 376–380. doi: 10.1038/337376a0.
  Grønlund, M., Constantin, G., Piednoir, E., Kovacev, J., Johansen, I. E., & Lund, O. S. (2008). Virus‐induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Research, 135(2), 345–349. doi: 10.1016/j.virusres.2008.04.005.
  Guo, S.‐M., Kamphuis, L. G., Gao, L.‐L., Klingler, J. P., Lichtenzveig, J., Edwards, O., & Singh, K. B. (2012). Identification of distinct quantitative trait loci associated with defence against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula. Journal of Experimental Botany, 63, 3913–3922. doi: 10.1093/jxb/ers084.
  Gurdon, C., & Maliga, P. (2014). Two distinct plastid genome configurations and unprecedented intraspecies length variation in the accD coding region in Medicago truncatula. DNA Research, 21, 417–427. doi: 10.1093/dnares/dsu007.
  Hale, C. R., Zhao, P., Olson, S., Duff, M. O., Graveley, B. R., Wells, L., … Terns, M. P. (2009). RNA‐guided RNA cleavage by a CRISPR RNA‐Cas protein complex. Cell, 139, 945–956. doi: 10.1016/j.cell.2009.07.040.
  Han, Y., Motes, C. M., & Monteros, M. J. (2010). Evaluation and utilization of morphological variation in a Medicago truncatula Core Collection. In C. Hurghe, Sustainable use of genetic diversity in forage and turf breeding (pp. 101‐105). Dordrecht, Netherlands: Springer.
  Han, Y., Zhang, G., Jiang, G., Sledge, M. K., Greene, S. L., Coyne, C. J., … Monteros, M. J. (2007, November). Evaluation of genetic diversity, population structure and identification of a Medicago truncatula core collection using SSR markers. Presented at the meeting of the ASA‐CSSA‐SSSA, New Orleans, LA.
  Haun, W., Coffman, A., Clasen, B. M., Demorest, Z. L., Lowy, A., Ray, E., … Zhang, F. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal, 12, 934–940. doi: 10.1111/pbi.12201.
  He, J., Benedito, V. A., Wang, M., Murray, J. D., Zhao, P. X., Tang, Y., & Udvardi, M. K. (2009). The Medicago truncatula gene expression atlas web server. BMC Bioinformatics, 10, 441. doi: 10.1186/1471‐2105‐10‐441.
  Hill, W. G. (2010). Understanding and using quantitative genetic variation. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365, 73–85. doi: 10.1098/rstb.2009.0203.
  Hoffmann, B., Trinh, T. H., Leung, J., Kondorosi, A., & Kondorosi, E. (1997). A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Molecular Plant‐Microbe Interactions, 10, 307–315. doi: 10.1094/MPMI.1997.10.3.307.
  Huard‐Chauveau, C., Perchepied, L., Debieu, M., Rivas, S., Kroj, T., Kars, I., … Roby, D. (2013). An atypical kinase under balancing selection confers broad‐spectrum disease resistance in arabidopsis. PLoS Genetics, 9, e1003766. doi: 10.1371/journal.pgen.1003766.
  Iantcheva, A., Chabaud, M., Cosson, V., Barascud, M., Schutz, B., Primard‐Brisset, C., … Ratet, P. (2009). Osmotic shock improves Tnt1 transposition frequency in Medicago truncatula cv Jemalong during in vitro regeneration. Plant Cell Reports, 28, 1563–1572. doi: 10.1007/s00299‐009‐0755‐6.
  Jacobs, T. B., LaFayette, P. R., Schmitz, R. J., & Parrott, W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 15, 16. doi: 10.1186/s12896‐015‐0131‐2.
  Jankowicz‐Cieslak, J., & Till, B. J. (2016). Chemical mutagenesis of seed and vegetatively propagated plants using EMS. Current Protocols in Plant Biology, 1, 617–635. doi: 10.1002/cppb.20040.
  Jardinaud, M. F., Boivin, S., Rodde, N., Catrice, O., Kisiala, A., Lepage, A., … Gamas, P. (2016). A laser dissection‐RNAseq analysis highlights the activation of cytokinin pathways by nod factors in the Medicago truncatula root epidermis. Plant Physiology, 171, 2256–2276. doi: 10.1104/pp.16.00711.
  Jaudal, M., Yeoh, C. C., Zhang, L., Stockum, C., Mysore, K. S., Ratet, P., & Putterill, J. (2013). Retroelement insertions at the Medicago FTa1 locus in spring mutants eliminate vernalisation but not long day requirements for early flowering. Plant Journal, 76, 580–591. doi: 10.1111/tpj.12315.
  Jaudal, M., Monash, J., Zhang, L., Wen, J., Mysore, K. S., Macknight, R., & Putterill, J. (2014). Overexpression of Medicago SVP genes causes floral defects and delayed flowering in Arabidopsis but only affects floral development in Medicago. Journal of Experimental Botany, 65, 429–442. doi: 10.1093/jxb/ert384.
  Julier, B., Huguet, T., Chardon, F., Ayadi, R., Pierre, J.‐B., Prosperi, J.‐M., … Huyghe, C. (2007). Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula. Theoretical and Applied Genetics, 114, 1391–1406. doi: 10.1007/s00122‐007‐0525‐1.
  Kadri, A., Julier, B., Laouar, M., Ben, C., Badri, M., Chedded, J., … Abdelguerfi, A. (2017). Genetic determinism of fitness traits under drought stress in the model legume Medicago truncatula. Acta Physiologiae Plantarum, 39, 227. doi: 10.1007/s11738‐017‐2527‐1.
  Kamaté, K., Rodriguez‐Llorente, I. D., Scholte, M., Durand, P., Ratet, P., Kondorosi, E., … Trinh, T. H. (2000). Transformation of floral organs with GFP in Medicago truncatula. Plant Cell Reports, 19, 647–653. doi: 10.1007/s002999900168.
  Kamphuis, L. G., Guo, S.‐M., Gao, L.‐L., & Singh, K. B. (2016). Genetic mapping of a major resistance gene to pea aphid (Acyrthosipon pisum) in the model legume Medicago truncatula. International Journal of Molecular Sciences, 17, 1224. doi: 10.3390/ijms17081224.
  Kamphuis, L. G., Lichtenzveig, J., Oliver, R. P., & Ellwood, S. R. (2008). Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula. BMC Plant Biology, 8, 30. doi: 10.1186/1471‐2229‐8‐30.
  Kamphuis, L. G., Lichtenzveig, J., Peng, K., Guo, S.‐M., Klingler, J. P., Siddique, K. H. M., … Singh, K. B. (2013). Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula. Journal of Experimental Botany, 64, 5157–5172. doi: 10.1093/jxb/ert305.
  Kamphuis, L. G., Williams, A. H., D'Souza, N. K., Pfaff, T., Ellwood, S. R., Groves, E. J., … Lichtenzveig, J. (2007). The Medicago truncatula reference accession A17 has an aberrant chromosomal configuration. New Phytologist, 174, 299–303. doi: 10.1111/j.1469‐8137.2007.02039.x.
  Kang, Y., Sakiroglu, M., Krom, N., Stanton‐Geddes, J., Wang, M., Lee, Y.‐C., … Udvardi, M. (2015). Genome‐wide association of drought‐related and biomass traits with HapMap SNPs in Medicago truncatula. Plant, Cell & Environment, 38, 1997–2011. doi: 10.1111/pce.12520.
  Kazmierczak, T., Nagymihály, M., Lamouche, F., Barrière, Q., Guefrachi, I., Alunni, B., … Gruber, V. (2017). Specific host‐responsive associations between Medicago truncatula accessions and Sinorhizobium strains. Molecular Plant‐Microbe Interactions, 30, 399–409. doi: 10.1094/MPMI‐01‐17‐0009‐R.
  Klingler, J. P., Nair, R. M., Edwards, O. R., & Singh, K. B. (2009). A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid. Journal of Experimental Botany, 60, 4115–4127. doi: 10.1093/jxb/erp244.
  Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Koppen‐Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263. doi: 10.1127/0941‐2948/2006/0130.
  Krajinski, F., Courty, P. E., Sieh, D., Franken, P., Zhang, H., Bucher, M., … Hause, B. (2014). The H+‐ATPase HA1 of Medicago truncatula is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis. Plant Cell, 26, 1808–1817. doi: 10.1105/tpc.113.120436.
  Kulikova, O., Gualtieri, G., Geurts, R., Kim, D.‐J., Cook, D., Huguet, T., … Bisseling, T. (2001). Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant Journal, 27, 49–58. doi: 10.1046/j.1365‐313x.2001.01057.x.
  Lagunes Espinoza, L. C., Huguet, T., & Julier, B. (2012). Multi‐population QTL detection for aerial morphogenetic traits in the model legume Medicago truncatula. Theoretical and Applied Genetics, 124, 739–754. doi: 10.1007/s00122‐011‐1743‐0.
  Lagunes Espinoza, L. C., & Julier, B. (2013). QTL detection for forage quality and stem histology in four connected mapping populations of the model legume Medicago truncatula. Theoretical and Applied Genetics, 126, 497. doi: 10.1007/s00122‐012‐1996‐2.
  Larrainzar, E., Riely, B. K., Kim, S. C., Carrasquilla‐Garcia, N., Yu, H. J., Hwang, H. J., … Cook, D. R. (2015). Deep sequencing of the medicago truncatula root transcriptome reveals a massive and early interaction between nodulation factor and ethylene signals. Plant Physiology, 169, 233–265. doi: 10.1104/pp.15.00350.
  Lazrek, F., Roussel, V., Ronfort, J., Cardinet, G., Chardon, F., Aouani, M. E., & Huguet, T. (2009). The use of neutral and non‐neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco‐environmental variables. Genetica, 135, 391–402. doi: 10.1007/s10709‐008‐9285‐3.
  Le Signor, C., Savois, V., Aubert, G., Verdier, J., Nicolas, M., Pagny, G., … Thompson, R. (2009). Optimizing TILLING populations for reverse genetics in Medicago truncatula. Plant Biotechnology Journal, 7, 430–441. doi: 10.1111/j.1467‐7652.2009.00410.x.
  Lei, Z., Elmer, A. M., Watson, B. S., Dixon, R. A., Mendes, P. J., & Sumner, L. W. (2005). A two‐dimensional electrophoresis proteomic reference map and systematic identification of 1367 proteins from a cell suspension culture of the model legume Medicago truncatula. Molecular and Cellular Proteomics, 4, 1812–1825. doi: 10.1074/mcD500005‐MCP200.
  Lesins, K. A., & Lesins, I. (1979). Genus Medicago: (leguminosae): A taxogenetic study. The Hague, Netherlands: Springer.
  Li, B., Cui, G., Shen, G., Zhan, Z., Huang, L., Chen, J., & Qi, X. (2017). Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Scientific Reports, 7, 43320. doi: 10.1038/srep43320.
  Li, G., Wang, B., Tian, Q., Wang, T., & Zhang, W. H. (2014). Medicago truncatula ecotypes A17 and R108 differed in their response to iron deficiency. Journal of Plant Physiology, 171, 639–647. doi: 10.1016/j.jplph.2013.12.018.
  Li, J.‐F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., … Sheen, J. (2013). Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31, 688–691. doi: 10.1038/nbt.2654.
  Li, X., Lassner, M., & Zhang, Y. L. (2002). Delete‐a‐gene: A fast neutron deletion mutagenesis‐based gene knockout system for plants. Comparative and Functional Genomics, 3, 158–160. doi: 10.1002/cfg.148.
  Li, X., Song, Y. J., Century, K., Straight, S., Ronald, P., Dong, X. N., … Zhang, Y. L. (2001). A fast neutron deletion mutagenesis‐based reverse genetics system for plants. Plant Journal, 27, 235–242. doi: 10.1046/j.1365‐313x.2001.01084.x.
  Li, Z., Liu, Z. B., Xing, A., Moon, B. P., Koellhoffer, J. P., Huang, L., … Cigan, A. M. (2015). Cas9‐guide RNA directed genome editing in soybean. Plant Physiology, 169, 960–970. doi: 10.1104/15.00783.
  Liang, Z., Zong, Y., & Gao, C. (2016). An efficient targeted mutagenesis system using CRISPR/cas in monocotyledons. Current Protocols in Plant Biology, 1, 329–344. doi: 10.1002/cppb.20021.
  Limpens, E., Ramos, J., Franken, C., Raz, V., Compaan, B., Franssen, H., … Geurts, R. (2004). RNA interference in Agrobacterium rhizogenes‐transformed roots of Arabidopsis and Medicago truncatula. Journal of Experimental Botany, 55, 983–992. doi: 10.1093/jxb/erh122.
  Liu, Y. G., Chen, Y., & Zhang, Q. (2005). Amplification of genomic sequences flanking T‐DNA insertions by thermal asymmetric interlaced polymerase chain reaction. Methods in Molecular Biology, 286, 341–348.
  Liu, Y. G., Mitsukawa, N., Oosumi, T., & Whittier, R. F. (1995). Efficient isolation and mapping of Arabidopsis thaliana T‐DNA insert junctions by thermal asymmetric interlaced PCR. Plant Journal, 8, 457–463. doi: 10.1046/j.1365‐313X.1995.08030457.x.
  Loridon, K., Burgarella, C., Chantret, N., Martins, F., Gouzy, J., Prospéri, J.‐M., & Ronfort, J. (2013). Single‐nucleotide polymorphism discovery and diversity in the model legume Medicago truncatula. Molecular Ecology Resources, 13, 84–95. doi: 10.1111/1755‐0998.12021.
  Luo, S. S., Sun, Y. N., Zhou, X., Zhu, T., Zhu, L. S., Arfan, M., … Lin, H. H. (2016). Medicago truncatula genotypes Jemalong A17 and R108 show contrasting variations under drought stress. Plant Physiology and Biochemistry, 109, 190–198. Doi: 10.1016/j.plaphy.2016.09.019.
  Mackay, T. F. C., Stone, E. A., & Ayroles, J. F. (2009). The genetics of quantitative traits: Challenges and prospects. Nature Reviews Genetics, 10, 565–577. doi: 10.1038/nrg2612.
  Madrid, E., Barilli, E., Gil, J., Huguet, T., Gentzbittel, L., & Rubiales, D. (2013). Detection of partial resistance quantitative trait loci against Didymella pinodes in Medicago truncatula. Molecular Breeding, 33, 589–599. doi: 10.1007/s11032‐013‐9976‐z.
  Małolepszy, A., Mun, T., Sandal, N., Gupta, V., Dubin, M., Urbański, D., … Andersen, S. U. (2016). The LORE1 insertion mutant resource. Plant Journal, 88, 306–317. doi: 10.1111/tpj.13243.
  Marsh, J. F., Rakocevic, A., Mitra, R. M., Brocard, L., Sun, J., Eschstruth, A., … Oldroyd, G. E. D. (2007). Medicago truncatula NIN is essential for Rhizobial‐independent nodule organogenesis induced by autoactive calcium/calmodulin‐dependent protein kinase. Plant Physiology, 144, 324–335. doi: 10.1104/106.093021.
  Mehregan, I., Rahiminejad, M. R., & Azizian, D. (2002). A taxonomic revision of the genus Medicago L. (Fabaceae) in Iran. Iranian Journal of Botany, 9, 207–221.
  Meng, Y., Hou, Y., Wang, H., Ji, R., Liu, B., Wen, J., … Lin, H. (2017). Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Reports, 36, 371–374. doi: 10.1007/s00299‐016‐2069‐9.
  Meksem, K., & Kahl, G. (2010). The handbook of plant mutation screening (mining of natural and induced alleles). Weinheim, Germany: Wiley‐VCH.
  Michno, J.‐M., Wang, X., Liu, J., Curtin, S. J., Kono, T. J., & Stupar, R. M. (2015). CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web‐tool and a modified Cas9 enzyme. GM Crops & Food, 6, 243–252. doi: 10.1080/21645698.2015.1106063.
  Modolo, L., Blount, J., Achnine, L., Naoumkina, M., Wang, X., & Dixon, R. (2007). A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula. Plant Molecular Biology, 64, 499–518. doi: 10.1007/s11103‐007‐9167‐6.
  Moll, K. M., Zhou, P., Ramaraj, T., Fajardo, D., Devitt, N. P., Sadowsky, M. J., … Mudge, J. (2017). Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model Medicago truncatula. BMC Genomics, 18, 567. doi: 10.1186/s12864‐017‐3971‐4.
  Moreau, D., Burstin, J., Aubert, G., Huguet, T., Ben, C., Prosperi, J.‐M., … Munier‐Jolain, N. (2012). Using a physiological framework for improving the detection of quantitative trait loci related to nitrogen nutrition in Medicago truncatula. Theoretical and Applied Genetics, 124, 755–768. doi: 10.1007/s00122‐011‐1744‐z.
  Mun, J.‐H. (2005). Distribution of microsatellites in the genome of Medicago truncatula: A resource of genetic markers that integrate genetic and physical maps. Genetics, 172, 2541–2555. doi: 10.1534/genetics.105.054791.
  Negahi, A., Ben, C., Gentzbittel, L., Maury, P., Nabipour, A. R., Ebrahimi, A., … Rickauer, M. (2014). Quantitative trait loci associated with resistance to a potato isolate of verticillium albo‐ atrum in Medicago truncatula. Plant Pathology, 63, 308–315. doi: 10.1111/ppa.12100.
  Nomura, T., Sakurai, T., Osakabe, Y., Osakabe, K., & Sakakibara, H. (2016). Efficient and heritable targeted mutagenesis in mosses using the CRISPR/Cas9 system. Plant & Cell Physiology, 57, 2600–2610. doi: 10.1093/pcp/pcw173.
  Okamoto, H., & Hirochika, H. (2000). Efficient insertion mutagenesis of Arabidopsis by tissue culture‐induced activation of the tobacco retrotransposon Tto1. Plant Journal, 23, 291–304. doi: 10.1046/j.1365‐313x.2000.00779.x.
  Oldroyd, G. E. (2013). Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nature Review Microbiology, 11, 252–263. doi: 10.1038/nrmicro2990.
  Ovchinnikova, E., Journet, E.‐P., Chabaud, M., Cosson, V., Ratet, P., Duc, G., … Limpens, E. (2011). IPD3, controls the intracellular accommodation of rhizobia in pea and Medicago. Molecular Plant‐Microbe Interactions, 24, 1333–1344. doi: 10.1094/MPMI‐01‐11‐0013.
  Paape, T., Bataillon, T., Zhou, P., Kono, T. J. Y., Briskine, R., Young, N. D., & Tiffin, P. (2013). Selection, genome‐wide fitness effects and evolutionary rates in the model legume Medicago truncatula. Molecular Ecology, 22, 3525–3538. doi: 10.1111/mec.12329.
  Paszkowski, J. (2015). Controlled activation of retrotransposition for plant breeding. Current Opinion in Biotechnology, 32, 200–206. doi: 10.1016/j.copbio.2015.01.003.
  Pathipanawat, W., Jones, R. A. C., & Sivasithamparam, K. (1994). An improved method for artificial hybridization in annual Medicago species. Australian Journal of Agricultural Research, 45, 1329–1335. doi: 10.1071/AR9941329.
  Pavlidis, P., Jensen, J. D., Stephan, W., & Stamatakis, A. (2012). A critical assessment of storytelling: Gene ontology categories and the importance of validating genomic scans. Molecular Biology and Evolution, 29, 3237–3248. doi: 10.1093/molbev/mss136.
  Penmesta, R. V., & Cook, D. R. (2000). Production and characterization of diverse developmental mutants of Medicago truncatula. Plant Physiology, 123, 1387–1397. doi: 10.1104/123.4.1387.
  Petit, A., David, C., Dahl, G. A., Ellis, J. G., Guyon, P., Casse‐Delbart, F., & Tempe, J. (1983). Further extension of the opine concept: Plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Molecular And General Genetics, 190, 204–214. doi: 10.1007/BF00330641.
  Pierre, J.‐B., Bogard, M., Herrmann, D., Huyghe, C., & Julier, B. (2011). A CONSTANS‐like gene candidate that could explain most of the genetic variation for flowering date in Medicago truncatula. Molecular Breeding, 28, 25–35. doi: 10.1007/s11032‐010‐9457‐6.
  Pierre, J.‐B., Huguet, T., Barre, P., Huyghe, C., & Julier, B. (2008). Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula. Theoretical and Applied Genetics, 117, 609–620. doi: 10.1007/s00122‐008‐0805‐4.
  Pilet‐Nayel, M.‐L., Prospéri, J.‐M., Hamon, C., Lesné, A., Lecointe, R., Le Goff, I., … Baranger, A. (2009). AER1, a major gene conferring resistance to Aphanomyces euteiches in Medicago truncatula. Phytopathology, 99, 203–208. doi: 10.1094/PHYTO‐99‐2‐0203.
  Pislariu, C. I., Murray, J. D., Wen, J., Cosson, V., Muni, R. R., Wang, M., … Udvardi, M. K. (2012). A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation. Plant Physiology, 159, 1686–1699. doi: 10.1104/pp.112.197061.
  Porceddu, A., Panara, F., Calderini, O., Molinari, L., Taviani, P., Lanfaloni, L., … Arcioni, S. (2008). An Italian functional genomic resource for Medicago truncatula. BMC Research Notes, 1, 129. doi: 10.1186/1756‐0500‐1‐129.
  Pritchard, J. K., & Di Rienzo, A. (2010). Adaptation ‐ not by sweeps alone. Nature Reviews Genetics, 11, 665–667. doi: 10.1038/nrg2880.
  Puckridge, D. W., & French, R. J. (1983). The annual legume pasture in cereal—Ley farming systems of southern Australia: A review. Agriculture, Ecosystems & Environment, 9, 229–267. doi: 10.1016/0167‐8809(83)90100‐7.
  Rakocevic, A., Mondy, S., Tirichine, L., Brocard, L., Cosson, V., Iantcheva, A., … Ratet, P. (2009). MERE1, a low copy number copia‐type retroelement in Medicago truncatula active during tissue culture. Plant Physiology, 151, 1250–1263. doi: 10.1104/109.138024.
  Ratet, P., Porcedu, A., Tadege, M., & Mysore, K. S. (2006). Insertional mutagenesis in Medicago truncatula using Tnt1 retrotransposon. In U. Mathesius, E.‐P. Journet, & L.W. Sumner (Eds.), The Medicago truncatula handbook (pp. 1‐12). Ardmore, OK: Noble Research Institute.
  Ratet, P., Wen, J., Cosson, V., Tadege, M., & Mysore, K. S. (2010). Tnt1 induced mutations in Medicago: Characterization and applications. In K. Meksem, & G. Kahl (Eds.), The Handbook of plant mutation screening: Mining of natural and induced alleles (pp. 83‐99). Weinheim, Germany: Wiley‐VCH.
  Rogers, C., Wen, J., Chen, R., & Oldroyd, G. (2009). Deletion‐based reverse genetics in Medicago truncatula. Plant Physiology, 151, 1077–1086. doi: 10.1104/109.142919.
  Ronfort, J., Bataillon, T., Santoni, S., Delalande, M., David, J. L., & Prosperi, J.‐M. (2006). Microsatellite diversity and broad scale geographic structure in a model legume: Building a set of nested core collection for studying naturally occurring variation in Medicago truncatula. BMC Plant Biology, 6, 28. doi: 10.1186/1471‐2229‐6‐28.
  Rose, R. J., Nolan, K. E., & Bicego, L. (1999). The development of the highly regenerable seed line Jemalong 2HA for transformation of Medicago truncatula‐implications for regenerability via somatic embryogenesis. Journal of Plant Physiology, 155, 788–791. doi: 10.1016/S0176‐1617(99)80097‐2.
  Salzer, P., Feddermann, N., Wiemken, A., Boller, T., & Staehelin, C. (2004). Sinorhizobium meliloti induced chitinase gene expression in Medicago truncatula ecotype R108‐1: A comparison between symbiosis‐specific class V and defence‐related class IV chitinases. Planta, 219, 626–638. doi: 10.1007/s00425‐004‐1268‐8.
  Sankaran, R., Huguet, T., & Grusak, M. (2009). Identification of QTL affecting seed mineral concentrations and content in the model legume Medicago truncatula. Theoretical and Applied Genetics, 119, 241–253. doi: 10.1007/s00122‐009‐1033‐2.
  Schnurr, J. A., Jung, H.‐J. G., & Samac, D. A. (2007). A comparative study of alfalfa and Medicago truncatula stem traits: Morphology, chemical composition, and ruminal digestibility. Crop Science, 47, 1672–1680. doi: 10.2135/cropsci2006.12.0762.
  Serwatowska, J., Roque, E., Gómez‐Mena, C., Constantin, G. D., Wen, J., Mysore, K. S., … Cañas, L. A. (2014). Two euAGAMOUS genes control C‐function in Medicago truncatula. PLoS One, 9, e103770. doi: 10.1371/journal.pone.0103770.
  Sha, Y., Li, S., Pei, Z., Luo, L., Tian, Y., & He, C. (2004). Generation and flanking sequence analysis of a rice T‐DNA tagged population. Theoretical and Applied Genetics, 108, 306–314. doi: 10.1007/s00122‐003‐1423‐9.
  Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., … Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR‐Cas system. Nature Biotechnology, 31, 686–688. doi: 10.1038/nbt.2650.
  Siol, M., Wright, S. I., & Barrett, S. C. H. (2010). The population genomics of plant adaptation. New Phytologist, 188, 313–332. doi: 10.1111/j.1469‐8137.2010.03401.x.
  Sledge, M. K., Pechter, P., & Payton, M. E. (2005). Aluminum tolerance in Medicago truncatula germplasm. Crop Science, 45, 2001–2004. doi: 10.2135/cropsci2004.0673.
  Small, E., & Jomphe, M. (1989). A synopsis of the genus Medicago (Leguminosae). Canadian Journal of Botany, 67, 3260–3294. doi: 10.1139/b89‐405.
  Somers, D. A., Samac, D. A., & Olhoft, P. M. (2003). Recent advances in legume transformation. Plant Physiology, 131, 892–899. doi: 10.1104/102.017681.
  Stanton‐Geddes, J., Paape, T., Epstein, B., Briskine, R., Yoder, J., Mudge, J., … Tiffin, P. (2013). Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole‐genome, sequence‐based association genetics in Medicago truncatula. PLoS One, 8, e65688. doi: 10.1371/journal.pone.0065688.
  Stewart, S. A., Hodge, S., Ismail, N., Mansfield, J. W., Feys, B. J., Prosperi, J.‐M., … Powell, G. (2009). The RAP1 gene confers effective, race‐specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. Molecular Plant‐Microbe Interactions, 22, 1645–1655. doi: 10.1094/MPMI‐22‐12‐1645.
  Tadege, M., Ratet, P., & Mysore, K. S. (2005). Insertional mutagenesis: A Swiss Army knife for functional genomics of Medicago truncatula. Trends in Plant Science, 10, 229–235. doi: 10.1016/j.tplants.2005.03.009.
  Tadege, M., Wang, T. L., Wen, J., Ratet, P., & Mysore, K. S. (2009). Mutagenesis and beyond! Tools for understanding legume biology. Plant Physiology, 151, 978–984. doi: 10.1104/109.144097.
  Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., … Mysore, K. S. (2008). Large‐scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant Journal, 54, 335–347. doi: 10.1111/j.1365‐313X.2008.03418.x.
  Tang, H., Krishnakumar, V., Bidwell, S., Rosen, B., Chan, A., Zhou, S., … Town, C. D. (2014). An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics, 15, 312. doi: 10.1186/1471‐2164‐15‐312.
  Tayeh, N., Bahrman, N., Devaux, R., Bluteau, A., Prosperi, J.‐M., Delbreil, B., & Lejeune‐Hénaut, I. (2013). A high‐density genetic map of the Medicago truncatula major freezing tolerance QTL on chromosome 6 reveals colinearity with a QTL related to freezing damage on Pisum sativum linkage group VI. Molecular Breeding, 32, 279–289. doi: 10.1007/s11032‐013‐9869‐1.
  Tayeh, N., Bahrman, N., Sellier, H., Bluteau, A., Blassiau, C., Fourment, J., … Delbreil, B. (2013). A tandem array of CBF/DREB1 genes is located in a major freezing tolerance QTL region on Medicago truncatula chromosome 6. BMC Genomics, 14, 814. doi: 10.1186/1471‐2164‐14‐814.
  Taylor, M., Blaylock, L., Nakashima, J., McAbee, D., Ford, J., Harrison, M., & Udvardi, M. (2011). Medicago truncatula hybridization – supplemental videos. In U., Mathesius, & E.‐P. Journet & L. W. Sumner, (Eds.), The Medicago truncatula handbook (pp. 1‐5). Ardmore, OK: Noble Research Institute.
  Thomas, M. R., Rose, R. J., & Nolan, K. E. (1992). Genetic transformation of Medicago truncatula using Agrobacterium with genetically modified Ri and disarmed Ti plasmids. Plant Cell Reports, 11, 113–117. doi: 10.1007/BF00232161.
  Thoquet, P., Ghérardi, M., Journet, E.‐P., Kereszt, A., Ané, J.‐M., Prosperi, J.‐M., & Huguet, T. (2002). The molecular genetic linkage map of the model legume Medicago truncatula: An essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biology, 2, 1. doi: 10.1186/1471‐2229‐2‐1.
  Tóth, K., Batek, J., & Stacey, G. (2016). Generation of soybean (Glycine max) transient transgenic roots. Current Protocols in Plant Biology, 1, 1–13. doi: 10.1002/cppb.20017.
  Tian, S., Jiang, L., Gao, Q., Zhang, J., Zong, M., Zhang, H., … Xu, Y. (2017). Efficient CRISPR/Cas9‐based gene knockout in watermelon. Plant Cell Reports, 36, 399–406. doi: 10.1007/s00299‐016‐2089‐5.
  Trieu, A. T., & Harrison, M. J. (1996). Rapid transformation of Medicago truncatula: Regeneration via shoot organogenesis. Plant Cell Reports, 16, 6–11. doi: 10.1007/BF01275439.
  Trinh, T. H., Ratet, P., Kondorosi, E., Durand, P., Kamaté, K., Bauer, P., & Kondorosi, A. (1998). Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata in vitro lines improved in somatic embryogenesis. Plant Cell Reports, 17, 345–355. doi: 10.1007/s002990050405.
  Trujillo, D. I., Silverstein, K. A., & Young, N. D. (2014). Genomic characterization of the LEED.PEEDs, a gene family unique to the medicago lineage. G3 (Bethesda), 4, 2003–2012. doi: 10.1534/g3.114.011874.
  Vailleau, F., Sartorel, E., Jardinaud, M.‐F., Chardon, F., Genin, S., Huguet, T., … Petitprez, M. (2007). Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula. Molecular Plant‐Microbe Interactions, 20, 159–167. doi: 10.1094/MPMI‐20‐2‐0159.
  van Hintum, T. J. L., Brown, A. H. D., Spillane, C., & Hodkin, T. (2000). Core collections of plant genetic resources. IPGRI Technical Bulletin No. 3. Rome, Italy: International Plant Genetic Resources Institute.
  Vandecasteele, C., Teulat‐Merah, B., Morère‐Le Paven, M.‐C., Leprince, O., Ly Vu, B., Viau, L., … Buitink, J. (2011). Quantitative trait loci analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula. Plant, Cell & Environment, 34, 1473–1487. doi: 10.1111/j.1365‐3040.2011.02346.x.
  Várallyay, E., Lichner, Z., Sáfrány, J., Havelda, Z., Salamon, P., Bisztray, G., & Burgyán, J. (2010). Development of a virus induced gene silencing vector from a legumes infecting tobamovirus. Acta Biologica Hungarica, 61, 457–469. doi: 10.1556/ABiol.61.2010.4.9.
  Veerappan, V., Jani, M., Kadel, K., Troiani, T., Gale, R., Mayes, T., … Dickstein, R. (2016). Rapid identification of causative insertions underlying Medicago truncatula Tnt1 mutants defective in symbiotic nitrogen fixation from a forward genetic screen by whole genome sequencing. BMC Genomics, 17, 141. doi: 10.1186/s12864‐016‐2452‐5.
  Veerappan, V., Kadel, K., Alexis, N., Scott, A., Kryvoruchko, I., Sinharoy, S., … Dickstein, R. (2014). Keel petal incision: A simple and efficient method for genetic crossing in Medicago truncatula. Plant Methods, 10, 11. doi: 10.1186/1746‐4811‐10‐11.
  Verdier, J., Kakar, K., Gallardo, K., Le Signor, C., Aubert, G., Schlereth, A., … Thompson, R. D. (2008). Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Molecular Biology, 67, 567–580. doi: 10.1007/s11103‐008‐9320‐x.
  Wallace, J. G., & Mitchell, S. E. (2017). Genotyping by sequencing. Current Protocols in Plant Biology, 2, 64–77. doi: 10.1002/cppb.20042.
  Wang, H., Chen, J., Wen, J., Tadege, M., Li, G., Liu, Y., … Chen, R. (2008). Control of compound leaf development by FLO/LFY ortholog Single Leaflet1 (SGL1) in Medicago truncatula. Plant Physiology, 146, 1759–1772. doi: 10.1104/108.117044.
  Wang, H., Li, G., & Chen, R. (2006). Fast neutron bombardment (FNB) mutagenesis for forward and reverse genetic studies in plants. In J. A. Teixeira da Silva, Floriculture, ornamental and plant biotechnology advances and topical issues (pp. 629–639). Isleworth, UK: Global Science Books.
  Wang, T. Z., Tian, Q. Y., Wang, B. L., Zhao, M. G., & Zhang, W. H. (2014). Genome variations account for different response to three mineral elements between Medicago truncatula ecotypes Jemalong A17 and R108. BMC Plant Biology, 14, 122. doi: 10.1186/1471‐2229‐14‐122.
  Wang, L., Wang, L., Tan, Q., Fan, Q., Zhu, H., Hong, Z., … Duanmu, D. (2016). Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR‐Cas9. Frontiers in Plant Science, 7, 1333. doi: 10.3389/fpls.
  Wang, Q., Yang, S., Liu, J., Terecskei, K., Ábrahám, E., Gombár, A., … Zhu, H. (2017). Host‐secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 114, 6854–6859. doi: 10.1073/pnas.1700715114.
  Whitham, S. A., Lincoln, L. M., Chowda‐Reddy, R. V., Dittman, J. D., O'Rourke, J. A., & Graham, M. A. (2016). Virus‐induced gene silencing and transient gene expression in soybean (Glycine max) using Bean pod mottle virus infectious clones. Current Protocols in Plant Biology, 1, 263–283. doi: 10.1002/cppb.20012.
  Wright, E., & Wang, Z. Y. (2015). Medicago truncatula transformation using cotyledonary explants. Methods in Molecular Biology, 1223, 35–41. doi: 10.1007/978‐1‐4939‐1695‐5_3.
  Yamazaki, M., Tsugawa, H., Miyao, A., Yano, M., Wu, J., Yamamoto, S., … Hirochika, H. (2001). The rice retrotransposon Tos17 prefers low‐copy‐number sequences as integration targets. Molecular Genetics and Genomics, 265, 336–344. doi: 10.1007/s004380000421.
  Yang, S., Gao, M., Deshpande, S., Lin, S., Roe, B. A., & Zhu, H. (2007). Genetic and physical localization of an anthracnose resistance gene in Medicago truncatula. Theoretical and Applied Genetics, 116, 45–52. doi: 10.1007/s00122‐007‐0645‐7.
  Yang, S., Gao, M., Xu, C., Gao, J., Deshpande, S., Lin, S., … Zhu, H. (2008). Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad‐spectrum resistance to anthracnose in alfalfa. Proceedings of the National Academy of Sciences of the United States of America, 105, 12164–12169. doi: 10.1073/pnas.0802518105.
  Yang, S., Wang, Q., Fedorova, E., Liu, J., Qin, Q., Zheng, Q., … Zhu, H. (2017). Microsymbiont discrimination mediated by a host‐secreted peptide in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 114, 6848–6853. doi: 10.1073/pnas.1700460114.
  Yoder, J. B., Stanton‐Geddes, J., Zhou, P., Briskine, R., Young, N. D., & Tiffin, P. (2014). Genomic signature of adaptation to climate in Medicago truncatula. Genetics, 196, 1263–1275. doi: 10.1534/genetics.113.159319.
  Young, N. D., Debelle, F., Oldroyd, G. E. D., Geurts, R., Cannon, S. B., Udvardi, M. K., … Roe, B. A. (2011). The Medicago genome provides insight into the evolution of Rhizobial symbioses. Nature, 480, 520–524. doi: 10.1038/nature10625.
  Youssef, C., Aubry, C., Montrichard, F., Beucher, D., Juchaux, M., Ben, C., … Teulat, B. (2016). Cell length instead of cell number becomes the predominant factor contributing to hypocotyl length genotypic differences under abiotic stress in Medicago truncatula. Physiologia Plantarum, 156, 108–124. doi: 10.1111/ppl.12379.
  Zhou, C., Han, L., Li, G., Chai, M., Fu, C., Cheng, X., … Wang, Z. Y. (2014). STM/BP‐ike KNOXI is uncoupled from ARP in the regulation of compound leaf development in Medicago truncatula. Plant Cell, 26, 1464–1479. doi: 10.1105/tpc.114.123885.
  Zhu, Y., Sheaffer, C. C., Russelle, M. P., & Vance, C. P. (1998). Dry matter accumulation and dinitrogen fixation of annual Medicago species. Agronomy Journal, 90, 103–108. doi: 10.2134/agronj1998.00021962009000010019x.
Internet Resources
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library