Receptor Theory

Terry Kenakin1

1 GlaxoSmithKline Research Institute, Research Triangle Park, North Carolina
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 1.2
DOI:  10.1002/0471141755.ph0102s41
Online Posting Date:  June, 2008
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Receptor theory assigns mathematical rules to biological systems in order to quantify drug effects and define what biological systems can and cannot do, leading to the design of experiments that may further modify the model. Drug receptor theory also furnishes the tools for quantifying the activity of drugs in a system‐independent manner, essential because drugs are almost always studied in test systems somewhat removed from the therapeutic system for which they are intended. Since biological systems operate at different set points in the body under different conditions, the ability to predict drug effects under a variety of circumstances is important. This unit provides a historical perspective of classical receptor theory and the currently used operational model of drug effects. The mechanism of drug receptor function is also described in terms of the various iterations of the ternary complex model, the two‐state theory for ion channels, and a probabilistic model of multiple receptor conformations. Curr. Protoc. Pharmacol. 41:1.2.1‐1.2.28. © 2008 by John Wiley & Sons, Inc.

Keywords: occupancy theory; agonist; antagonist; agonism; antagonism; two‐state theory; ternary complex model

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Origins of Receptor Theory
  • Occupancy Theory
  • Operational Model
  • Two‐State Theory
  • Ternary Complex Model of Receptors
  • Summary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Ariens, E.J. 1954. Affinity and intrinsic activity in the theory of competitive inhibition. Arch. Int. Pharmacodyn. Ther. 99: 32‐49.
   Ariens, E.J. 1964. Molecular Pharmacology: The Mode of Action of Biologically Active Compounds. Academic Press, San Diego.
   Birnbaumer, L.G. 1990. G proteins in signal transduction. Annu. Rev. Pharmacol. Toxicol. 30: 675‐705.
   Birnbaumer, L.G., Yatani, A., VanDongen, A.M.J., Graf, R., Codina, J., Odabe, K., Mattera, R., and Brown, A.M. 1990. G protein coupling of receptors to ionic channels and other effector systems. In G‐Proteins and Signal Transduction (N.M. Nathanson and T.K. Harden, eds.) pp. 169‐183. Rockefeller University Press, New York.
   Black, J.W. and Leff, P. 1983. Operational models of pharmacological agonist. Proc. R. Soc. London B Biol. Sci. 220: 141‐162.
   Boeynaems, J.M. and Dumont, J.E. 1977. The two‐step model of ligand‐receptor interaction. Mol. Cell. Endocrinol. 7: 33‐47.
   Bourne, H.R., Sanders, D.A., and McCormick, F. 1990. A conserved switch for diverse cell functions. Nature 348: 125‐132.
   Changeux, J.‐P., Thiery, J., Tung, Y., and Kittel, C. 1967. On the cooperativity of biological membranes. Proc. Natl. Acad. Sci. U.S.A. 57: 335‐341.
   Clark, A.J. 1933. The Mode of Action of Drugs on Cells. Edward Arnold, London.
   Clark, A.J. 1937. General pharmacology. In Heffner's Handbuch der Experimentaellen Pharmacokogie, Erganzungswerk Band 4. Springer‐Verlag, Berlin.
   Colquhoun, D. 1973. The relationship between classical and cooperative models for drug action. In Symposium on Drug Receptors (H.P. Rang, ed.) pp. 149‐182. University Park Press, Baltimore.
   Costa, T., Ogino, Y., Munson, P.J., Onaran, H.O., and Rodbard, D. 1992. Drug efficacy at guanine nucleotide‐binding regulatory protein‐linked receptors: Thermodynamic interpretation of negative antagonism and of receptor activity in the absence of ligand. Mol. Pharmacol. 41: 549‐560.
   Cuatrecasas, P. 1974. Membrane receptors. Annu. Rev. Biochem. 43: 169‐214.
   Del Castillo, J. and Katz, B. 1957. Interaction at end‐plate receptors between different choline derivatives. Proc. R. Soc. London B Biol. Sci. 146: 369‐381.
   DeLean, A., Stadel, J.M., and Lefkowitz, R.J. 1980. A ternary complex model explains the agonist‐specific binding properties of adenylate cyclase coupled b‐adrenergic receptor. J. Biol. Chem. 255: 7108‐7117.
   Ehlert, R.J. 1985. The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium. Mol. Pharmacol. 28: 410‐421.
   Ehrlich, P. 1909. Über den jetzigen Stand der Chemotherapie. Berl. Dtsch. Chem. Ges. 42: 17‐47.
   Furchgott, R.F. 1966. The use of β‐haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor‐agonist complexes. In Advances in Drug Research, Vol. 3 (N.J. Harper and A.B. Simmonds, eds.) pp. 21‐55. Academic Press, San Diego.
   Furchgott, R.F. 1972. The classification of adrenoreceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory. In Handbook of Experimental Pharmacology, Catecholamines, Vol. 33 (H. Blaschko and E. Muscholl, eds.) pp. 283‐335. Springer‐Verlag, Heidelberg.
   Gaddum, J.H. 1937. The quantitative effects of antagonistic drugs. J. Physiol. (Lond.) 89: 7P‐9P.
   Gaddum, J.H. 1957. Theories of drug antagonism. Pharmacol. Rev. 9: 211‐218.
   Gaddum, J.H., Hameed, K.A., Hathway, D.E., and Stephens, F.F. 1955. Quantitative studies of antagonists for 5‐hydroxytryptamine. Q. J. Exp. Physiol. 40: 49‐74.
   Heidenreich, K.A., Weiland, G.A., and Molinoff, P.B. 1980. Characterization of radiolabeled agonist binding to β‐adrenergic receptors in mammalian tissues. J. Cyclic Nucleotide Res. 6: 217‐230.
   Hill, A.J. 1909. The mode of action of nicotine and curare, determined by the form of the contraction curve and the method of temperature coefficients. J. Physiol. (Lond.) 39: 361‐373.
   Iyengar, R., Abramowitz, J., Bordelon‐Riser, M., and Birnbaumer, L. 1980. Hormone receptor‐mediated stimulation of adenylyl cyclase systems. Nucleotide effects and analysis in terms of a simple two‐state model for the basic receptor‐affected enzyme. J. Biol. Chem. 255: 3558‐3564.
   Jacobs, S. and Cuatrecasas, P. 1976. The mobile receptor hypothesis and “cooperativity” of hormone binding: Applications to insulin. Biochim. Biophys. Acta 433: 482‐495.
   Karlin, A. 1967. On the application of a “plausible model” of allosteric proteins to the receptor for acetylcholine. J. Theor. Biol. 16: 306‐320.
   Katz, B. and Thesleff, S. 1957. A study of the “desensitization” produced by acetylcholine at the motor end‐plate. J. Physiol. (Lond.) 138: 63‐80.
   Kenakin, T.P. 2004. Principles: Receptor theory in pharmacology. Trends Pharmacol. Sci. 25: 186‐192.
   Kenakin, T.P. 2006. Collateral efficacy as pharmacological problem applied to new drug discovery. Expert Opin. Drug Disc. 1: 635‐652.
   Kenakin, T.P. and Beek, D. 1980. Is prenalterol (HI33/80) really a selective β‐1 adrenoceptor agonist? Tissue selectivity resulting from differences in stimulus‐response relationships. J. Pharmacol. Exp. Ther. 213: 406‐412.
   Langley, J.N. 1878. On the physiology of salivary secretion. J. Physiol. (Lond.) 1: 339‐369.
   Lee, T.W.T., Sole, M.J., and Wells, J.W. 1986. Assessment of a ternary model for the binding of agonists to neurohumoral receptors. Biochemistry 25: 7009‐7020.
   Lefkowitz, R.J., Cotecchia, S., Samama, P., and Costa, T. 1993. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol. Sci. 14: 303‐307.
   MacKay, D. 1987. Use of null equations, based on classical receptor and ternary models of drug action, to classify receptors and receptor‐effector systems. In Perspectives on Receptor Classification (J.W. Black, D.H. Jenkinson, and V.P. Gerskowitch, eds.) pp. 193‐206. Alan R. Liss, New York.
   MacKay, D. 1990. Agonist potency and apparent affinity: Interpretation using classical and steady‐state ternary‐complex models. Trends Pharmacol. Sci. 11: 17‐22.
   Mayo, K.H., Nunez, M., Burke, C., Starbuck, C., Lauffenberger, D., and Savage, C.R. Jr. 1989. Epidermal growth factor receptor binding is not a simple one‐step process. J. Biol. Chem. 264: 17838‐17844.
   Minton, A.P. and Sokolovsky, M. 1990. A model for the interaction of muscarinic receptors, agonists, and two distinct effector substances. Biochemistry 29: 1586‐1593.
   Neubig, R.R., Gantzoz, R.D., and Thomsen, W.J. 1988. Mechanism of agonist and antagonist binding to α2‐andrenergic receptors: Evidence for a precoupled receptor guanine nucleotide protein complex. Biochemistry 27: 2374‐2384.
   Nickerson, M. 1956. Receptor occupancy and tissue response. Nature 178: 697‐698.
   Onaran, H.O. and Costa, T. 1997. Agonist efficacy and allosteric models of receptor action. Ann. N. Y. Acad. Sci. 812: 98‐115.
   Onaran, H.O., Scheer, A., Cotecchia, S. and Costa, T. 2000. A look at receptor efficacy. From the signaling network of the cell to the intramolecular motion of the receptor. In The Pharmacology of Functional, Biochemical, and Recombinant Systems Handbook of Experimental Pharmacology, Vol. 148. (T.P. Kenakin and J.A. Angus, eds.) pp. 217‐280. Springer, Heidelberg, Germany.
   Parascandola, J. 1986. The development of receptor theory. In Pharmacological Methods, Receptors & Chemotherapy, Vol. 3. (M.J. Parnham and J. Bruinvels, eds.) pp. 12‐158. Elsevier/North Holland, Amsterdam.
   Podleski, T.R. and Changeux, J.‐P. 1970. On the excitability and cooperativity of electroplax membrane. In Fundamental Concepts in Drug‐Receptor Interaction (J.F. Danielli, J.F. Moran, and D.J. Triggle, eds.) pp. 93‐119. Academic Press, New York.
   Ross, E.M. 1989. Signal sorting and amplification through G protein‐coupled receptors. Neuron 3: 141‐152.
   Ross, E.M., MaGuire, M.E., Sturgill, T.W., Biltonen, R.L., and Gilman, A.G. 1977. Relationship between the β‐adrenergic receptor and adenylate cyclase. J. Biol. Chem. 252: 5761‐5775.
   Samama, P., Cotecchia, S., Costa, T., and Lefkowitz, R.J. 1993. A mutation‐induced activated state of the b2‐adrenergic receptor: Extending the ternary complex model. J. Biol. Chem. 268: 4625‐4636.
   Stephenson, R.P. 1956. A modification of receptor theory. Br. J. Pharmacol. 11: 379‐393.
   Thron, C.D. 1973. On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol. Pharmacol. 9: 1‐9.
   Weiss, J.M., Morgan, P.H., Lutz, M.W., and Kenakin, T.P. 1996a. The cubic ternary complex receptor occupancy model. I. Model description. J. Theor. Biol. 178: 151‐167.
   Weiss, J.M., Morgan, P.H., Lutz, M.W., and Kenakin, T.P. 1996b.The cubic ternary complex receptor occupancy model. II. Understanding apparent affinity. J. Theor. Biol. 178: 169‐182.
   Wregget, K.A. and DeLean, A. 1984. The ternary complex model: Its properties and application to ligand interactions with the D2‐dopamine receptor and the anterior pituitary gland. Mol. Pharmacol. 26: 214‐227.
   Wyman J. 1975. The turning wheel: A study in steady states. Proc. Natl. Acad. Sci. U.S.A. 72: 3983‐3987.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library