Overview of Receptor Allosterism

Karen J. Gregory1, Patrick M. Sexton1, Arthur Christopoulos1

1 Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Victoria, Australia
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 1.21
DOI:  10.1002/0471141755.ph0121s51
Online Posting Date:  December, 2010
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

In addition to the orthosteric site, which recognizes endogenous ligands, most G protein–coupled receptors (GPCRs) possess topographically distinct allosteric sites that can be recognized by small molecules and accessory cellular proteins. Ligand binding to allosteric sites promotes a conformational change in the GPCR that can alter orthosteric ligand affinity and/or efficacy. Moreover, there has been an increase in recent years in the identification of allosteric agonists that can directly activate the receptor in the absence of orthosteric ligand. Allosteric sites are attractive therapeutic targets because they can be exploited to achieve modes of selectivity and signaling that are not attainable by orthosteric means. However, an important challenge in this field remains the quantification of the myriad of possible allosteric effects on binding and signaling events. This unit provides an overview on GPCR allosterism and the different pharmacological approaches to understanding allosteric behaviors. Curr. Protoc. Pharmacol. 51:1.21.1‐1.21.34. © 2010 by John Wiley & Sons, Inc.

Keywords: allosteric ternary complex model; bitopic; G protein–coupled receptor; modulator; orthosteric; radioligand binding

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Historical Perspective
  • The Many Shades of Receptor Allosterism
  • An Allosteric Ternary Complex Model (ATCM) and Its Variants
  • Detecting Allosteric Interactions
  • Classes of Allosteric Ligands
  • Utility of Allosteric Ligands
  • Summary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Antony, J., Kellershohn, K., Mohr‐Andrä, M., Kebig, A., Prilla, S., Muth, M., Heller, E., Disingrini, T., Dallanoce, C., Bertoni, S., Schrobang, J., Tränkle, C., Kostenis, E., Christopoulos, A., Höltje, H.D., Barocelli, E., De Amici, M., Holzgrabe, U., and Mohr, K. 2009. Dualsteric GPCR targeting: A novel route to binding and signaling pathway selectivity. FASEB J. 23:442‐450.
   Aurelio, L., Valant, C., Flynn, B.L., Sexton, P.M., Christopoulos, A., and Scammells, P.J. 2009. Allosteric modulators of the adenosine A1 receptor: Synthesis and pharmacological evaluation of 4‐substituted 2‐amino‐3‐benzoylthiophenes. J. Med. Chem. 52:4543‐4547.
   Avlani, V., May, L.T., Sexton, P.M., and Christopoulos, A. 2004. Application of a kinetic model to the apparently complex behavior of negative and positive allosteric modulators of muscarinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 308:1062‐1072.
   Barcroft, J. and Hill, A.V. 1910. The nature of oxyhaemoglobin, with a note on its molecular weight. J. Physiol. 39:411‐428.
   Black, J.W. and Leff, P. 1983. Operational models of pharmacological agonism. Proc. R. Soc. Lond. B. Biol. Sci. 220:141‐162.
   Bruns, R.F. and Fergus, J.H. 1990. Allosteric enhancement of adenosine A1 receptor binding and function by 2‐amino‐3‐benzoylthiophenes. Mol. Pharmacol. 38:939‐949.
   Chan, W.Y., McKinzie, D.L., Bose, S., Mitchell, S.N., Witkin, J.M., Thompson, R.C., Christopoulos, A., Lazareno, S., Birdsall, N.J., Bymaster, F.P., and Felder, C.C. 2008. Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc. Natl. Acad. Sci. U.S.A. 105:10978‐10983.
   Christopoulos, A. and El‐Fakahany, E.E. 1999. Qualitative and quantitative assessment of relative agonist efficacy. Biochem. Pharmacol. 58:735‐748.
   Colquhoun, D. 1973. The relation between classical and cooperative models for drug action. In Drug Receptors (H.P. Rang, ed.) pp. 149‐182. Macmillan Press, London.
   Colquhoun, D. 1998. Binding, gating, affinity and efficacy: The interpretation of structure‐activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmac. 125:924‐947.
   Disingrini, T., Muth, M., Dallanoce, C., Barocelli, E., Bertoni, S., Kellershohn, K., Mohr, K., De Amici, M., and Holzgrabe, U. 2006. Design, synthesis, and action of oxotremorine‐related hybrid‐type allosteric modulators of muscarinic acetylcholine receptors. J. Med. Chem. 49:366‐372.
   Dorr, P., Westby, M., Dobbs, S., Griffin, P., Irvine, B., Macartney, M., Mori, J., Rickett, G., Smith‐Burchnell, C., Napier, C., Webster, R., Armour, D., Price, D., Stammen, B., Wood, A., and Perros, M. 2005. Maraviroc (UK‐427,857), a potent, orally bioavailable, and selective small‐molecule inhibitor of chemokine receptor CCR5 with broad‐spectrum anti‐human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 49:4721‐4732.
   Ehlert, F.J. 1985. The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium. Mol. Pharmacol. 28:410‐421.
   Ehlert, F.J. 1988. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharmacol. 33:187‐194.
   Ehlert F.J. and Rathbun, B.E. 1990. Signaling through the muscarinic receptor‐adenylate cyclase system of the heart is buffered against GTP over a range of concentrations. Mol. Pharmacol. 38:148‐158.
   Hall, D.A. 2000. Modeling the functional effects of allosteric modulators at pharmacological receptors: An extension of the two‐state model of receptor activation. Mol. Pharmacol. 58:1412‐1423.
   Hedlund, P.B., Carson, M.J., Sutcliffe, J.G., and Thomas, E.A. 1999. Allosteric regulation by oleamide of the binding properties of 5‐ hydroxytryptamine7 receptors. Biochem. Pharmacol. 58:1807‐1813.
   Hejnova, L., Tucek, S., and El‐Fakahany, E.E. 1995. Positive and negative allosteric interactions on muscarinic receptors. Eur. J. Pharmacol. 291:427‐430.
   Hoare, S.R.J. and Strange, P.G. 1996. Regulation of D2 dopamine receptors by amiloride and amiloride analogs. Mol. Pharmacol. 50:1295‐1308.
   Jager, D., Schmalenbach, C., Prilla, S., Schrobang, J., Kebig, A., Sennwitz, M., Heller, E., Trankle, C., Holzgrabe, U., Holtje, H.D., and Mohr, K. 2007. Allosteric small molecules unveil a role of an extracellular E2/transmembrane helix 7 junction for G protein–coupled receptor activation. J. Biol. Chem. 282:34968‐34976.
   Jakubìk, J., Bacakova, L., El‐Fakahany, E.E., and Tucek, S. 1997. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol. Pharmacol. 52:172‐179.
   Jones, C.K., Brady, A.E., Davis, A.A., Xiang, Z., Bubser, M., Tantawy, M.N., Kane, A.S., Bridges, T.M., Kennedy, J.P., Bradley, S.R., Peterson, T.E., Ansari, M.S., Baldwin, R.M., Kessler, R.M., Deutch, A.Y., Lah, J.J., Levey, A.I., Lindsley, C.W., and Conn, P.J. 2008. Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic‐like activity in rats. J. Neurosci. 28:10422‐10433.
   Karlin, A. 1967. On the application of “a Plausible Model” of allosteric proteins to the receptor for acetylcholine. J. Theor. Biol. 16:306‐320.
   Kenakin, T.P. 1997. Pharmacologic Analysis of Drug‐Receptor Interaction, 3rd ed. Lippincott‐Raven, Philadelphia.
   Kostenis, E. and Mohr, K. 1996. Composite action of allosteric modulators on ligand binding. Trends Pharmacol. Sci. 17:443‐444.
   Langmead, C.J., Watson, J., and Reavill, C. 2008. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol. Ther. 117:232‐243.
   Lazareno, S. and Birdsall, N.J.M. 1995. Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein‐coupled receptors: Interactions of strychnine and acetylcholine at muscarinic receptors. Mol. Pharmacol. 48:362‐378.
   Lazareno, S., Dolezal, V., Popham, A., and Birdsall, N.J. 2004. Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: Receptor subtype selectivity via cooperativity rather than affinity. Mol. Pharmacol. 65:257‐266.
   Leach, K., Sexton, P.M., and Christopoulos, A. 2007. Allosteric GPCR modulators: Taking advantage of permissive receptor pharmacology. Trends. Pharmacol. Sci. 28:382‐389.
   Lefkowitz, R.J., Cotecchia, S., Samama, P., and Costa, T. 1993. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol. Sci. 14:303‐307.
   Leppik, R.A., Lazareno, S., Mynett, A., and Birdsall, N.J.M. 1998. Characterization of the allosteric interactions between antagonists and amiloride analogues at the human α2A‐adrenergic receptor. Mol. Pharmacol. 53:916‐925.
   Lindberg, J. S., Culleton, B., Wong, G., Borah, M.F., Clark, R.V., Shapiro, W.B., Roger, S.D., Husserl, F.E., Klassen, P.S., Guo, M.D., Albizem, M.B., and Coburn, J.W. 2005. Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double‐blind, multicenter study. J. Am. Soc. Nephrol. 16:800‐807.
   May, L.T., Avlani, V.A., Langmead, C.J., Herdon, H.J., Wood, M.D., Sexton, P.M., and Christopoulos, A. 2007. Structure‐function studies of allosteric agonism at M2 muscarinic acetylcholine receptors. Mol. Pharmacol. 72:463‐476.
   Milligan, G. and Smith, N.J. 2007. Allosteric modulation of heterodimeric G‐protein‐coupled receptors. Trends. Pharmacol. Sci. 28:615‐620.
   Monod, J. and Jacob, F. 1961. General conclusions: Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harbor Symp. Quant. Biol. 26:389‐401.
   Monod, J., Changeux, J.‐P., and Jacob, F. 1963. Allosteric proteins and cellular control systems. J. Mol. Biol. 6:306‐329.
   Monod, J., Wyman, J., and Changeux, J.P. 1965. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12:88‐118.
   Nawaratne, V., Leach, K., Suratman, N., Loiacono, R.E., Felder, C.C., Armbruster, B.N., Roth, B.L., Sexton, P.M., and Christopoulos, A. 2008. New insights into the function of M4 muscarinic acetylcholine receptors gained using a novel allosteric modulator and a DREADD (designer receptor exclusively activated by a designer drug). Mol. Pharmacol. 74:1119‐1131.
   Neubig, R.R., Spedding, M., Kenakin, T., and Christopoulos, A. 2003. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol. Rev. 55:597‐606.
   Price, M.R., Baillie, G.L., Thomas, A., Stevenson, L.A., Easson, M., Goodwin, R., McLean, A., McIntosh, L., Goodwin, G., Walker, G., Westwood, P., Marrs, J., Thomson, F., Cowley, P., Christopoulos, A., Pertwee, R.G., and Ross, R.A. 2005. Allosteric modulation of the cannabinoid CB1 receptor. Mol. Pharmacol. 68:1484‐1495.
   Proska, J. and Tucek, S. 1994. Mechanisms of steric and cooperative actions of alcuronium on cardiac muscarinic acetylcholine receptors. Mol. Pharmacol. 45:709‐717.
   Spalding, T.A., Trotter, C., Skjaerbaek, N., Messier, T.L., Currier, E.A., Burstein, E.S., Li, D., Hacksell, U., and Brann, M.R. 2002. Discovery of an ectopic activation site on the M(1) muscarinic receptor. Mol. Pharmacol. 61:1297‐1302.
   Spalding, T.A., Ma, J.N., Ott, T.R., Friberg, M., Bajpai, A., Bradley, S.R., Davis, R.E., Brann, M.R., and Burstein, E.S. 2006. Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC‐42, AC‐260584, clozapine, and N‐desmethylclozapine: Evidence for three distinct modes of receptor activation. Mol. Pharmacol. 70:1974‐1983.
   Thron, C.D. 1973. On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol. Pharmacol. 9:1‐9.
   Urwyler, S., Mosbacher, J., Lingenhoehl, K., Heid, J., Hofstetter, K., Froestl, W., Bettler, B., and Kaupmann, K. 2001. Positive allosteric modulation of native and recombinant gamma‐aminobutyric acid(B) receptors by 2,6‐Di‐tert‐butyl‐4‐(3‐hydroxy‐2,2‐dimethyl‐propyl)‐phenol (CGP7930) and its aldehyde analog CGP13501. Mol. Pharmacol. 60:963‐971.
   Valant, C., Gregory, K.J., Hall, N.E., Scammells, P.J., Lew, M.J., Sexton, P.M., and Christopoulos, A. 2008. A novel mechanism of G protein‐coupled receptor functional selectivity. Muscarinic partial agonist McN‐A‐343 as a bitopic orthosteric/allosteric ligand. J. Biol. Chem. 283:29312‐29321.
   Valant, C., Sexton, P.M., and Christopoulos, A. 2009. Orthosteric/allosteric bitopic ligands: Going hybrid at GPCRs. Mol. Interv. 9:125‐135.
   Weber, G. 1972. Ligand binding and internal equilibria in proteins. Biochemistry 11:864‐878.
   Weber, G. 1975. Energetics of ligand binding to proteins. Adv. Prot. Chem. 29:1‐83.
   Wyman, J. 1975. The turning wheel: A study in steady states. Proc. Natl. Acad. Sci. U.S.A. 72:3983‐3987.
   Zahn, K., Eckstein, N., Trankle, C., Sadee, W., and Mohr, K. 2002. Allosteric modulation of muscarinic receptor signaling: Alcuronium‐induced conversion of pilocarpine from an agonist into an antagonist. J. Pharmacol. Exp. Ther. 301:720‐728.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library