Overview of Signal Transduction

Timothy A. Esbenshade1, Emir Duzic2

1 Abbott Laboratories, Abbott Park, Illinois, 2 Cephalon Inc., West Chester, Pennsylvania
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 2.1
DOI:  10.1002/0471141755.ph0201s31
Online Posting Date:  January, 2006
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Receptor‐ and ion channel‐coupled signal transduction mechanisms are downstream communication processes used by regulatory molecules to modulate the essential cell processes of growth, differentiation and survival. Knowledge of signal transduction processes has dramatically increased in the past decade, and the basic principles of intracellular signaling are now quite well established. Cell signaling in higher organisms is a major, highly complex, phenomena that occupies a central position in current biomedical research. The complex machinery of intracellular signaling also has the potential to provide a wealth of novel drug discovery targets, from protein kinases, adaptor proteins, lipases, and cytoskeletal proteins, to nuclear effectors. This overview describes common features of cellular signaling pathways, including their interactions and responses to environmental stimuli. In particular, the overview focuses on the regulation of signaling pathways by protein functional‐domain interactions as well as the intracellular proteins that mediate signal transduction.

Keywords: Protein functional domains; GPCR; 7TM; Heterotrimeric G protein; Phospholipase; Nucleotide Cyclase; Tyrosine Kinase; Serine/Threonine Kinase; Phosphatase; MAPK; Ion Channel

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Protein Functional Modules
  • Intracellular Signaling Proteins
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

   Akiba, S. and Sato, T. 2004. Cellular function of calcium‐independent phospholipase A2. Biol. Pharm. Bull. 27:1174‐1178.
   Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., Hunter, T., Dixon, J., and Mustelin, T. 2004. Protein tyrosine phosphatases in the human genome. Cell 117:699‐711.
   Apic, G., Huber, W., and Teichmann, S.A. 2003. Multi‐domain protein families and domain pairs: Comparison with known structures and a random model of domain recombination. J. Struct. Funct. Genomics 4:67‐78.
   Arai, H. 2002. Platelet‐activating factor acetylhydrolase. Prostaglandins Other Lipid Mediat. 68‐69:83‐94.
   Balsinde, J., Winstead, M.V., and Dennis, E.A. 2002. Phospholipase A (2) regulation of arachidonic acid mobilization. FEBS Lett. 531:2‐6.
   Barford, D., Das, A.K., and Egloff, M.P. 1998. The structure and mechanism of protein phosphatases: Insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct. 27:133‐164.
   Berridge, M.J., Lipp, P., and Bootman, M.D. 2000. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1:11‐21.
   Blaikie, P., Immanuel, D., Wu, J., Li, N., Yajnik, V., and Margolis, B. 1994. A region in Shc distinct from the SH2 domain can bind tyrosine‐phosphorylated growth factor receptors. J. Biol. Chem. 269:32031‐32034.
   Blume‐Jensen, P. and Hunter, T. 2001. Oncogenic kinase signalling. Nature 411:355‐365.
   Bockaert, J., Fagni, L., Dumuis, A., and Marin, P. 2004. GPCR interacting proteins (GIP). Pharmacol. Ther. 103:203‐221.
   Brandon, E.P., Idzerda, R.L., and McKnight, G.S. 1997. PKA isoforms, neural pathways, and behavior: Making the connection. Curr. Opin. Neurobiol. 7:397‐403.
   Cismowski, M.J., Takesono, A., Ma, C., Lizano, J.S., Xie, X., Fuernkranz, H., Lanier, S.M., and Duzic, E. 1999. Genetic screens in yeast to identify mammalian nonreceptor modulators of G‐protein signaling. Nat. Biotechnol. 17:878‐883.
   Cismowski, M.J., Takesono, A., Bernard, M.L., Duzic, E., and Lanier, S.M. 2001. Receptor‐independent activators of heterotrimeric G‐proteins. Life Sci. 68: 2301‐2308.
   Clapham, D.E. 1995. Calcium signaling. Cell 80:259‐268.
   Clapham, D.E. and Neer, E.J. 1997. G protein βγ subunits. Annu. Rev. Pharmacol. Toxicol. 37:167‐204.
   Cockcroft, S. 2001. Signalling roles of mammalian phospholipase D1 and D2. Cell. Mol. Life Sci. 58:1674‐1687.
   Colley, W.C., Sung, T.C., Roll, R., Jenco, J., Hammond, S.M., Altshuller, Y., Bar‐Sagi, D., Morris, A.J., and Frohman, M.A. 1997. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. 7:191‐201.
   Diaz, B.L. and Arm, J.P. 2003. Phospholipase A(2). Prostaglandins, Leukot. Essent. Fatty Acids 69:87‐97.
   Dohlman, H.G. and Thorners, J. 1997. RGS proteins and signaling by heterotrimeric G proteins. J. Biol. Chem. 272:3871‐3874.
   Exton, J.H. 2002. Phospholipase D‐structure, Regulation and function. Rev. Physiol. Biochem. Pharmacol. 144:1‐94.
   Ferguson, S.S. 2001. Evolving concepts in G protein‐coupled receptor endocytosis: The role in receptor desensitization and signaling. Pharmacol. Rev. 53:1‐24.
   Fredriksson, R., Lagerstrom, M.C., Lundin, L.G., and Schioth, H.B. 2003. The G‐protein‐coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 63:1256‐1272.
   Funk, C.D. 2001. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 294:1871‐1875.
   Gibson, A.D. and Garbers, D.L. 2000. Guanylyl cyclases as a family of putative odorant receptors. Annu. Rev. Neurosci. 23:417‐439.
   Gijon, M.A., Spencer, D.M., and Leslie, C.C. 2000. Recent advances in the regulation of cytosolic phospholipase A(2). Adv Enzyme Regul. 40:255‐268.
   Gschwind, A., Zwick, E., Prenzel, N., Leserer, M., and Ullrich, A. 2001. Cell communication networks: Epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene 20:1594‐1600.
   Gudermann, T., Kalkbrenner, F., and Schultz, G. 1996. Diversity and selectivity of receptor‐G protein interaction. Annu. Rev. Pharmacol. Toxicol. 36:429‐460.
   Hata, A.N. and Breyer, R.M. 2004. Pharmacology and signaling of prostaglandin receptors: Multiple roles in inflammation and immune modulation. Pharmacol. Ther. 103:147‐166.
   Hofmann, J. 1997. The potential for isoenzyme‐selective modulation of protein kinase C. FASEB J. 11:649‐669.
   Homma, Y. and Emori, Y. 1995. A dual functional signal mediator showing RhoGAP and phospholipase C‐δ stimulating activities. EMBO J. 14:286‐291.
   Houslay, M.D. and Kolch, W. 2000. Cell‐type specific integration of cross‐talk between extracellular signal‐regulated kinase and cAMP signaling. Mol. Pharmacol. 58:659‐668.
   Houslay, M.D. and Milligan, G. 1997. Tailoring cAMP‐signalling responses through isoform multiplicity. Trends Biochem. Sci. 22:217‐224.
   Ignarro, L.J. 2002. Nitric oxide as a unique signaling molecule in the vascular system: A historical overview. J. Physiol. Pharmacol. 53:503‐514.
   Ihle, J.N. 2001. The Stat family in cytokine signaling. Curr. Opin. Cell Biol. 13:211‐217.
   Jonas, E.A. and Kaczmarek, L.K. 1996. Regulation of potassium channels by protein kinases. Curr. Opin. Neurobiol. 6:318‐323.
   Johnson, G.L. and Lapadat, R. 2002. Mitogen‐activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911‐1912.
   Krupnick, J.G. and Benovic, J.L. 1998. The role of receptor kinases and arrestins in G protein‐coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38:289‐319.
   Kuhn, M. 2003. Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase‐A. Circ. Res. 93:700‐709.
   Lefkowitz, R.J. and Shenoy, S.K. 2005. Transduction of receptor signals by β‐arrestins. Science 308:512‐517.
   Lemmon, M.A. and Ferguson, K.M. 2000. Signal‐dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 350:1‐18.
   Leslie, C.C. 2004. Regulation of arachidonic acid availability for eicosanoid production. Biochem. Cell Biol. 82:1‐17.
   Liss, B. and Roeper, J. 2001. Molecular physiology of neuronal K‐ATP channels Mol. Membr. Biol. 18:117‐127.
   Litosch, I. 2002. Novel mechanisms for feedback regulation of phospholipase C‐beta activity. IUBMB Life 54:253‐260.
   Lohse, M.J., Bluml, K., Danner, S., and Krasel, C. 1996. Regulators of G‐protein‐mediated signalling. Biochem. Soc. Trans. 24:975‐980.
   Lopez, I., Mak, E.C., Ding, J., Hamm, H.E., Jon, W., and Lomasney, J.W. 2001. A novel bifunctional phospholipase C that is regulated by Gα12 and stimulates the Ras/Mitogen‐activated protein kinase pathway J. Biol. Chem. 276:2758‐2765.
   Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S. 2002. The protein kinase complement of the human genome. Science 298:1912‐1934.
   Massague, J. 1998. TGF‐beta signal transduction. Annu. Rev. Biochem. 67:753‐791.
   Maurice, D.H., Palmer, D., Tilley, D.G., Dunkerley, H.A., Netherton, S.J., Raymond, D.R., Elbatarny, H.S., and Jimmo, S.L. 2003. Cyclic nucleotide phosphodiesterase activity, expression and targeting in cells of the cardiovascular system. Mol. Pharmacol. 64:533‐546.
   Mayer, B.J. 2001. SH3 domains: Complexity in moderation. J. Cell Sci. 114:1253‐1263.
   Murakami, M., 2004. Hot topics in phospholipases A2 field. Biol. Pharm. Bull. 27:1179‐1182.
   Murthy, S.N., Lomasney, J.W., Mak, E.C., and Lorand, L. 1999. Interactions of Gh/transglutaminase with phospholipase Cdelta1 and with GTP. Proc. Natl. Acad. Sci. U.S.A. 96:11815‐11819.
   Nalefski, E.A., Sultzman, L.A., Martin, D.M., Kriz, R.W., Towler, P.S., Knopf, J.L., and Clark, J.D. 1994. Delineation of two functionally distinct domains of cytosolic phospholipase A2, a regulatory Ca(2+)‐dependent lipid‐binding domain and a Ca(2+)‐independent catalytic domain. J. Biol. Chem. 269:18239‐18249.
   Neubig, R.R. and Siderovski, D.P. 2002. Regulators of G‐protein signalling as new central nervous system drug targets. Nat. Rev. Drug Discov. 1:187‐97.
   Niethammer, M., Kim, E., and Sheng, M. 1996. Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD‐95 family of membrane‐associated guanyl‐ate kinases. J. Neurosci. 16:2157‐2163.
   Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M., and Miyano, M. 2000. Crystal structure of rhodopsin: A G protein‐coupled receptor. Science 289:739‐745.
   Pawson, T. 1995. Protein modules and signalling networks. Nature 373:573‐580.
   Pawson, T. and Linding, R. 2005. Synthetic modular systems – reverse engineering of signal transduction. FEBS Lett. 579:1808‐1814.
   Puceat, M. and Vassort, G. 1996. Signalling by protein kinase C isoforms in the heart. Mol. Cell. Biochem. 157:65‐72.
   Pyne, N.J., Waters, C., Moughal, N.A., Sambi, B.S., and Pyne, S. 2003. Receptor tyrosine kinase‐GPCR signal complexes. Biochem. Soc. Trans. 31:1220‐1225.
   Rameh, L.E. and Cantley, L.C. 1999. The role of phosphoinositide 3‐kinase lipid products in cell function. J. Biol. Chem. 274:8347‐8350.
   Rhee, S.G. 2001. Regulation of phosphoinositide‐specific phospholipase C. Annu. Rev. Biochem. 70:281‐312.
   Rebecchi, M.J. and Pentyala, S.N. 2000. Structure, function, and control of phosphoinositide‐specific phospholipase C. Physiol. Rev. 80:1291‐1335.
   Robishaw, J.D. and Berlot, C.H. 2004. Translating G protein subunit diversity into functional specificity. Curr. Opin. Cell Biol. 16:206‐209.
   Schlessinger, J. 2000. Cell signaling by receptor tyrosine kinases. Cell 103:211‐225.
   Soderling, S.H. and Beavo, J.A. 2000. Regulation of cAMP and cGMP signaling: New phosphodiesterases and new functions. Curr. Opin. Cell Biol. 12:174‐179.
   Sprang, S.R. 1997. G protein mechanisms: Insights from structural analysis. Annu. Rev. Biochem. 66:639‐678.
   Sunahara, R.K. and Taussig, R. 2002. Isoforms of mammalian adenylyl cyclase: Multiplicities of signaling. Mol. Interv. 2:168‐184.
   Takesono, A., Cismowski, M.J., Ribas, C., Bernard, M., Chung, P., Hazard, S. 3rd, Duzic, E., and Lanier, S.M. 1999. Receptor‐independent activators of heterotrimeric G‐protein signaling pathways. J. Biol. Chem. 274:33202‐33205.
   Tamura, N., Chrisman, T.D., and Garbers, D.L. 2001. The regulation and physiological roles of the guanylyl cyclase receptors. Endocr. J. 48:611‐634.
   Uhlik, M.T., Temple, B., Bencharit, S., Kimple, A.J., Siderovski, D.P., and Johnson, G.L. 2005. Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J. Mol. Biol. 345:1‐20.
   van Biesen, T., Luttrell, L.M., Hawes, B.E., and Lefkowitz, R.J. 1996. Mitogenic signaling via G protein‐coupled receptors. Endocr. Rev. 17:698‐714.
   van Ham, M. and Hendriks, W. 2003. PDZ domains‐glue and guide. Mol. Biol. Rep. 30:69‐82.
   Waters, C.M., Connell, M.C., Pyne, S., and Pyne, N.J. 2005. c‐Src is involved in regulating signal transmission from PDGFbeta receptor‐GPCR(s) complexes in mammalian cells. Cell. Signal. 17:263‐277.
   Zachariou, V., Georgescu, D., Sanchez, N., Rahman, Z., DiLeone, R., Berton, O., Neve, R.L., Sim‐Selley, L.J., Selley, D.E., Stephen, J., Gold, S.J., and Nestler, E.J. 2003. Essential role for RGS9 in opiate action. Proc. Natl. Acad. Sci. U.S.A. 100:13656‐13661.
Key References
   Exton, 2002. See above.
  A review of the intracellular signaling mechanisms associated with phospholipase activation in response to GPCR activation
   Pawson et al., 2005. See above.
  A review of the structure and function of protein modules shared by many signaling intermediates, and the mechanisms by which they mediate protein‐protein interactions
   van Biesen et al., 1996. See above.
  A comprehensive review of mitogenic signaling as mediated by G proteins and GPCRs.
   Schlessinger, 2002. See above.
  A review of the cell signaling mediated by receptor tyrosine kinases
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library