Overview of Phosphoinositide Hydrolysis

David Kendall1

1 University of Nottingham Medical School, Nottingham, United Kingdom
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 2.3
DOI:  10.1002/0471141755.ph0203s00
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Phosphoinositide hydrolysis is a ubiquitous, multifunctional, intracellular signaling mechanism induced (via receptor activation) by a wide variety of signaling molecules such as hormones and neurotransmitters. Phosphoinositide hydrolysis generates intracellular second messengers that regulate cell function. This overview describes the major molecular players involved in phosphoinositide signaling along with experimental strategies for measuring phosphoinositide hydrolysis, including inositol radiolabeling methodologies, membrane phospholipase C assays, cytidine prelabeling, and mass measurements of phosphoinositide cycle products.

PDF or HTML at Wiley Online Library

Table of Contents

  • Phosphoinositide Signaling Pathways
  • Experimental Strategies
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Arias‐Montano, J.A., Berger, V., and Young, J.M. 1994. Calcium dependence of histamine‐ and carbachol‐induced inositol phosphate formation in human U373MG astrocytoma cells: Comparison with HeLa cells and brain slices. Br. J. Pharmacol. 111:598‐608.
   Berridge, M.J. 1993. Inositol trisphosphate and calcium signalling. Nature 361:315‐325.
   Berridge, M.J. and Irvine, R.F. 1989. Inositol phosphates and cell signalling. Nature 341:197‐205.
   Brown, E., Kendall, D.A., and Nahorski, S.R. 1984. Inositol phospholipid hydrolysis in rat cerebral cortex slices: I receptor characterization. J. Neurochem. 42:1379‐1387.
   Challiss, R.A.J., Batty, I.A., and Nahorski, S.R. 1988. Mass measurements of inositol 1,4,5‐trisphosphate in rat cerebral cortex slices using a radioreceptor assay. Biochem. Biophys. Res. Commun. 157:684‐691.
   Claro, E., Garcia, A., and Picatoste, F. 1989. Carbachol and histamine stimulation of guanine nucleotide‐dependent phosphoinositide hydrolysis in rat brain cortical membranes. Biochem. J. 261:29‐35.
   Fisher, S.K. 1995. Homologous and heterologous regulation of receptor‐stimulated phosphoinositide hydrolysis. Eur. J. Pharmacol. 288:231‐250.
   Fisher, S.K., Heacock, A.M., Agranoff, B.W. 1992. Inositol lipids and signal transduction in the nervous system: An update. J. Neurochem. 58:18‐37.
   Godfrey, P.P. 1989. Potentiation by lithium of CMP‐phosphatidate formation in carbachol‐stimulated rat cerebral cortical slices and its reversal by myo‐inositol. Biochem. J. 258:621‐624.
   Jenkinson, S. 1995. Separation of labeled inositol phosphate isomers by high‐pressure liquid chromatography (HPLC). Methods Mol. Biol. 41:151‐165.
   Jenkinson, S., Challiss, R.A.J., and Nahorski, S.R. 1992. Evidence for lithium‐sensitive inositol 4,5‐bisphosphate accumulation in muscarinic cholinoceptor–stimulated cerebral cortex slices. Biochem. J. 287:437‐442.
   Kalinoski, D.L., Aldinger, S.G., Boyle, A.G., Huque, T., Maracek, J.F., Prestwich, G.D., and Restrepo, D. 1992. Characterization of a novel inositol 1,4,5‐trisphosphate receptor in isolated olfactory cilia. Biochem. J. 281:449‐459.
   Kennedy, E.D., Challiss, R.A.J., and Nahorski, S.R. 1989. Lithium reduces the accumulation of inositol polyphosphate second messengers following cholinergic stimulation of cerebral cortex slices. J. Neurochem. 53:1652‐1655.
   Luckhoff, A. and Clapham, D.E. 1992. Inositol 1,3,4,5‐tetrakisphosphate activates an endothelial Ca2+‐permeable channel. Nature 355:356‐358.
   Meyer, T., Wesel, T., and Stryer, L. 1990. Kinetics of calcium channel opening by inositol 1,4,5‐trisphosphate. Biochemistry 29:32‐37.
   Morgan, S.J., Smith, A.D., and Parker, P.J. 1990. Purification and characterization of bovine brain type 1 phosphatidylinositol kinase. Eur. J. Biochem. 191:761‐767.
   Nahorski, S.R. and Challiss, R.A.J. 1991. Modulation of receptor‐mediated inositol phospholipid breakdown in the brain Neurochem. Int. 19:207‐212.
   Nahorski, S.R., Ragan, I., and Challiss, R.A.J. 1991. Lithium and the phosphoinositide cycle: An example of uncompetitive inhibition and its pharmacological consequences. Trends Pharmacol. Sci. 12:297‐303.
   Nishizuka, Y. 1988. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661‐665.
   Regunathan, S., Reis, D.J., and Wahlestedt, C. 1992. Specific binding of inositol hexakisphosphate (phytic acid) to adrenal chromaffin cell membranes and effects on calcium‐dependent chatecholamine release. Biochem. Pharmacol. 43:1331‐1336.
   Rhee, S.G. 1991. Inositol phospholipid‐specific phospholipase C: Interaction of the gamma1 isoform with tyrosine kinase. Trends Biochem. Sci. 16:297‐301.
   Rhee, S.G., Suh, P.‐G., Ryu, S.‐H., and Lee, S.Y. 1989. Studies of inositol phospholipid–specific phospholipase C. Science 244:546‐550.
   Rowley, K.G., Gundlach, A.L., Cincotta, M., and Louis, W.J. 1996. Inositol hexakisphosphate binding sites in rat heart and brain. Br. J. Pharmacol. 118:1615‐1620.
   Shears, S.B. 1989. Metabolism of the inositol phosphates produced upon receptor activation. Biochem. J. 260:313‐324.
Key Reference
   Berridge, 1993. See above.
  Excellent review of IP3 and calcium signaling.
PDF or HTML at Wiley Online Library