Overview of Different Mechanisms of Arrestin‐Mediated Signaling

Vsevolod V. Gurevich1, Eugenia V. Gurevich1

1 Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 2.10
DOI:  10.1002/0471141755.ph0210s67
Online Posting Date:  December, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Arrestins are characterized by their ability to selectively bind active, phosphorylated GPCRs and suppress (arrest) receptor coupling to G proteins. Nonvisual arrestins are also signaling proteins in their own right, activating a variety of cellular pathways. Arrestins are highly flexible proteins that can assume many distinct conformations. In their receptor‐bound conformation, arrestins have higher affinity for a subset of partners. This explains how receptor activation regulates certain branches of arrestin‐dependent signaling via arrestin recruitment to GPCRs. However, free arrestins are also active molecular entities that act in other pathways and localize signaling proteins to particular subcellular compartments, such as cytoskeleton. These functions are regulated by the enhancement or reduction of arrestin affinity for target proteins by other binding partners and by proteolytic cleavage. Recent findings suggest that the two visual arrestins, arrestin‐1 and arrestin‐4, which are expressed in photoreceptor cells, do not regulate signaling solely via binding to photopigments but also interact with a variety of nonreceptor partners, critically affecting the health and survival of photoreceptor cells. Detailed in this overview are GPCR‐dependent and independent modes of arrestin‐mediated regulation of cellular signaling pathways. © 2014 by John Wiley & Sons, Inc.

Keywords: arrestin; GPCR; cell signaling; MAP kinases; ubiquitin ligases; apoptosis

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • The Functional Cycle of Arrestins
  • Arrestins Have Binding Partners that Prefer Every Known Conformational State
  • Regulation of GPCR‐Independent Arrestin Functions
  • Visual Arrestins Have Multiple Functions
  • Conclusions
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Ahmed, M.R., Zhan, X., Song, X., Kook, S., Gurevich, V.V., and Gurevich, E.V. 2011. Ubiquitin ligase parkin promotes Mdm2‐arrestin interaction but inhibits arrestin ubiquitination. Biochemistry 3749‐3763.
  Bhandari, D., Trejo, J., Benovic, J.L., and Marchese, A. 2007. Arrestin‐2 interacts with the ubiquitin‐protein isopeptide ligase atrophin‐interacting protein 4 and mediates endosomal sorting of the chemokine receptor CXCR4. J. Biol. Chem. 282:36971‐36979.
  Breitman, M., Kook, S., Gimenez, L.E., Lizama, B.N., Palazzo, M.C., Gurevich, E.V., and Gurevich, V.V. 2012. Silent scaffolds: Inhibition of c‐Jun N‐terminal kinase 3 activity in the cell by a dominant‐negative arrestin‐3 mutant. J. Biol. Chem. 287:19653‐19664.
  Celver, J., Vishnivetskiy, S.A., Chavkin, C., and Gurevich, V.V. 2002. Conservation of the phosphate‐sensitive elements in the arrestin family of proteins. J. Biol. Chem. 277:9043‐9048.
  Chen, Q., Zhuo, Y., Kim, M., Hanson, S.M., Francis, D.J., Vishnivetskiy, S.A., Altenbach, C., Klug, C.S., Hubbell, W.L., and Gurevich, V.V. 2014. Self‐association of arrestin family members. Handb. Exp. Pharmacol. 219:205‐223.
  Coffa, S., Breitman, M., Hanson, S.M., Callaway, K., Kook, S., Dalby, K.N., and Gurevich, V.V. 2011. The effect of arrestin conformation on the recruitment of c‐Raf1, MEK1, and ERK1/2 activation. PLoS One 6:e28723.
  Danial, N.N. and Korsmeyer, S.J. 2004. Cell death: Critical control points. Cell 116:205‐219.
  DeWire, S.M., Ahn, S., Lefkowitz, R.J., and Shenoy, S.K. 2007. Beta‐arrestins and cell signaling. Annu. Rev. Physiol. 69:483‐510.
  Goodman, O.B. Jr., Krupnick, J.G., Santini, F., Gurevich, V.V., Penn, R.B., Gagnon, A.W., Keen, J.H., and Benovic, J.L. 1996. Beta‐arrestin acts as a clathrin adaptor in endocytosis of the beta2‐adrenergic receptor. Nature 383:447‐450.
  Gurevich, V.V. 1998. The selectivity of visual arrestin for light‐activated phosphorhodopsin is controlled by multiple nonredundant mechanisms. J. Biol. Chem. 273:15501‐15506.
  Gurevich, V.V. and Gurevich, E.V. 2003. The new face of active receptor bound arrestin attracts new partners. Structure 11:1037‐1042.
  Gurevich, V.V. and Gurevich, E.V. 2004. The molecular acrobatics of arrestin activation. Trends Pharmacol. Sci. 25:105‐111.
  Gurevich, E.V. and Gurevich, V.V. 2006a. Arrestins are ubiquitous regulators of cellular signaling pathways. Genome Biol. 7:236.
  Gurevich, V.V. and Gurevich, E.V. 2006b. The structural basis of arrestin‐mediated regulation of G protein‐coupled receptors. Pharm. Ther. 110:465‐502.
  Gurevich, V.V. and Gurevich, E.V. 2013. Structural determinants of arrestin functions. Prog. Mol. Biol. Transl. Sci. 118:57‐92.
  Gurevich, V.V. and Gurevich, E.V. 2014. Extensive shape shifting underlies functional versatility of arrestins. Curr. Opin. Cell Biol. 27:1‐9.
  Gurevich, E.V., Benovic, J.L., and Gurevich, V.V. 2004. Arrestin2 expression selectively increases during neural differentiation. J. Neurochem. 91:1404‐1416.
  Hanson, S.M., Francis, D.J., Vishnivetskiy, S.A., Klug, C.S., and Gurevich, V.V. 2006a. Visual arrestin binding to microtubules involves a distinct conformational change. J. Biol. Chem. 281:9765‐9772.
  Hanson, S.M., Francis, D.J., Vishnivetskiy, S.A., Kolobova, E.A., Hubbell, W.L., Klug, C.S., and Gurevich, V.V. 2006b. Differential interaction of spin‐labeled arrestin with inactive and active phosphorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 103:4900‐4905.
  Hanson, S.M., Cleghorn, W.M., Francis, D.J., Vishnivetskiy, S.A., Raman, D., Song, X., Nair, K.S., Slepak, V.Z., Klug, C.S., and Gurevich, V.V. 2007a. Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. J. Mol. Biol. 368:375‐387.
  Hanson, S.M., Van Eps, N., Francis, D.J., Altenbach, C., Vishnivetskiy, S.A., Arshavsky, V.Y., Klug, C.S., Hubbell, W.L., and Gurevich, V.V. 2007b. Structure and function of the visual arrestin oligomer. EMBO J. 26:1726‐1736.
  Hirsch, J.A., Schubert, C., Gurevich, V.V., and Sigler, P.B. 1999. The 2.8 A crystal structure of visual arrestin: A model for arrestin's regulation. Cell 97:257‐269.
  Huang, S.P., Brown, B.M., and Craft, C.M. 2010. Visual Arrestin 1 acts as a modulator for N‐ethylmaleimide‐sensitive factor in the photoreceptor synapse. J. Neurosci. 30:9381‐9391.
  Kim, M., Vishnivetskiy, S.A., Van Eps, N., Alexander, N.S., Cleghorn, W.M., Zhan, X., Hanson, S.M., Morizumi, T., Ernst, O.P., Meiler, J., Gurevich, V.V., and Hubbell, W.L. 2012. Conformation of receptor‐bound visual arrestin. Proc. Natl. Acad. Sci. U.S.A. 109:18407‐18412.
  Kook, S., Zhan, X., Kaoud, T.S., Dalby, K.N., Gurevich, V.V., and Gurevich, E.V. 2013. Arrestin‐3 binds JNK1α1 and JNK2α2 and facilitates the activation of these ubiquitous JNK isoforms in cells via scaffolding. J. Biol. Chem. 288:37332‐37342.
  Kook, S., Zhan, X., Cleghorn, W.M., Benovic, J.L., Gurevich, V.V., and Gurevich, E.V. 2014. Caspase‐cleaved arrestin‐2 and BID cooperatively facilitate cytochrome C release and cell death. Cell Death Differ. 21:172‐184.
  Krupnick, J.G., Gurevich, V.V., and Benovic, J.L. 1997a. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. J. Biol. Chem. 272:18125‐18131.
  Krupnick, J.G., Santini, F., Gagnon, A.W., Keen, J.H., and Benovic, J.L. 1997b. Modulation of the arrestin‐clathrin interaction in cells. Characterization of beta‐arrestin dominant‐negative mutants. J. Biol. Chem. 272:32507‐32512.
  Laporte, S.A., Oakley, R.H., Zhang, J., Holt, J.A., Ferguson, S.S.G., Caron, M.G., and Barak, L.S. 1999. The 2‐adrenergic receptor/arrestin complex recruits the clathrin adaptor AP‐2 during endocytosis. Proc. Natl. Acad. Sci. U.S.A. 96:3712‐3717.
  Luttrell, L.M., Ferguson, S.S., Daaka, Y., Miller, W.E., Maudsley, S., Della Rocca, G.J., Lin, F., Kawakatsu, H., Owada, K., Luttrell, D.K., Caron, M.G., and Lefkowitz, R.J. 1999. Beta‐arrestin‐dependent formation of beta2 adrenergic receptor‐Src protein kinase complexes. Science 283:655‐661.
  Luttrell, L.M., Roudabush, F.L., Choy, E.W., Miller, W.E., Field, M.E., Pierce, K.L., and Lefkowitz, R.J. 2001. Activation and targeting of extracellular signal‐regulated kinases by beta‐arrestin scaffolds. Proc. Natl. Acad. Sci. U.S.A. 98:2449‐2454.
  McDonald, P.H., Chow, C.W., Miller, W.E., Laporte, S.A., Field, M.E., Lin, F.T., Davis, R.J., and Lefkowitz, R.J. 2000. Beta‐arrestin 2: A receptor‐regulated MAPK scaffold for the activation of JNK3. Science 290:1574‐1577.
  Milano, S.K., Kim, Y.M., Stefano, F.P., Benovic, J.L., and Brenner, C. 2006. Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. J. Biol. Chem. 281:9812‐9823.
  Moaven, H., Koike, Y., Jao, C.C., Gurevich, V.V., Langen, R., and Chen, J. 2013. Visual arrestin interaction with clathrin adaptor AP‐2 regulates photoreceptor survival in the vertebrate retina. Proc. Natl. Acad. Sci. U.S.A. 110:9463‐9468.
  Palczewski, K., Pulvermuller, A., Buczylko, J., and Hofmann, K.P. 1991. Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J. Biol. Chem. 266:18649‐18654.
  Schleicher, A., Kuhn, H., and Hofmann, K.P. 1989. Kinetics, binding constant, and activation energy of the 48‐kDa protein‐rhodopsin complex by extra‐metarhodopsin II. Biochemistry 28:1770‐1775.
  Shoemaker, B.A., Portman, J.J., and Wolynes, P.G. 2000. Speeding molecular recognition by using the folding funnel: The fly‐casting mechanism. Proc. Natl. Acad. Sci. U.S.A. 97:8868‐8873.
  Song, X., Raman, D., Gurevich, E.V., Vishnivetskiy, S.A., and Gurevich, V.V. 2006. Visual and both nonvisual arrestins in their “inactive” conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. J. Biol. Chem. 281:21491‐21499.
  Song, X., Gurevich, E.V., and Gurevich, V.V. 2007. Cone arrestin binding to JNK3 and Mdm2: Conformational preference and localization of interaction sites. J. Neurochem. 103:1053‐1062.
  Song, X., Coffa, S., Fu, H., and Gurevich, V.V. 2009. How does arrestin assemble MAPKs into a signaling complex? J. Biol. Chem. 284:685‐695.
  Song, X., Seo, J., Baameur, F., Vishnivetskiy, S.A., Chen, Q., Kook, S., Kim, M., Brooks, E.K., Altenbach, C., Hong, Y., Hanson, S.M., Palazzo, M.C., Chen, J., Hubbell, W.L., Gurevich, E.V., and Gurevich, V.V. 2013. Rapid degeneration of rod photoreceptors expressing self‐association‐deficient arrestin‐1 mutant. Cell Signal 25:2613‐2624.
  Storez, H., Scott, M.G., Issafras, H., Burtey, A., Benmerah, A., Muntaner, O., Piolot, T., Tramier, M., Coppey‐Moisan, M., Bouvier, M., Labbe‐Jullie, C., and Marullo, S. 2005. Homo‐ and hetero‐oligomerization of beta‐arrestins in living cells. J. Biol. Chem. 280:40210‐40215.
  Sugase, K., Dyson, H.J., and Wright, P.E. 2007. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021‐1025.
  Vishnivetskiy, S.A., Hirsch, J.A., Velez, M.‐G., Gurevich, Y.V., and Gurevich, V.V. 2002. Transition of arrestin in the active receptor‐binding state requires an extended interdomain hinge. J. Biol. Chem. 277:43961‐43968.
  Wilden, U. 1995. Duration and amplitude of the light‐induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. Biochemistry 34:1446‐1454.
  Wilden, U., Hall, S.W., and Kühn, H. 1986. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48‐kDa protein of rod outer segments. Proc. Natl. Acad. Sci. U.S.A. 83:1174‐1178.
  Xiao, K., McClatchy, D.B., Shukla, A.K., Zhao, Y., Chen, M., Shenoy, S.K., Yates, J.R., and Lefkowitz, R.J. 2007. Functional specialization of beta‐arrestin interactions revealed by proteomic analysis. Proc. Natl. Acad. Sci. U.S.A. 104:12011‐12016.
  Zhan, X., Kaoud, T.S., Kook, S., Dalby, K.N., and Gurevich, V.V. 2013. JNK3 binding to arrestin‐3 differentially affects the recruitment of upstream MAP kinase kinases. J. Biol. Chem. 288:28535‐28547.
  Zhuang, T., Chen, Q., Cho, M.‐K., Vishnivetskiy, S.A., Iverson, T.I., Gurevich, V.V., and C.R., S. 2013. Involvement of distinct arrestin‐1 elements in binding to different functional forms of rhodopsin. Proc. Natl. Acad. Sci. U.S.A. 110:942‐947.
PDF or HTML at Wiley Online Library