Measurement of Receptor Signaling Bias

Terry Kenakin1

1 Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 2.15
DOI:  10.1002/cpph.11
Online Posting Date:  September, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

G protein–coupled receptors (GPCRs) are often pleiotropically linked to numerous cellular signaling mechanisms in cells, and it is now known that many agonists differentially activate some signaling pathways at the expense of others. The mechanism for this effect is the stabilization of different active receptor states by different agonists, and it leads to varying qualities of efficacy for different agonists. Agonist bias is a powerful mechanism to amplify beneficial signals and diminish harmful signals, and thus improve the overall profile of agonist ligands. This unit describes a method to quantify agonist bias with a scale that enables medicinal chemists to amplify or reduce these effects in new molecules. The method is based on the Black/Leff operational model and yields a statistical estimate of the confidence for bias measurements. © 2016 by John Wiley & Sons, Inc.

Keywords: receptor agonists; efficacy; drug discovery; receptor signaling

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Comparing Agonism within a Defined Signaling Pathway
  • Support Protocol 1: Quantifying Effects of Receptor Mutation on Signaling Bias
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Black, J.W. and Leff, P. 1983. Operational models of pharmacological agonist. Proc. R. Soc. Lond. Biol. 220:141‐162. doi: 10.1098/rspb.1983.0093.
  Black, J.W., Leff, P., Shankley, N.P., and Wood, J. 1985. An operational model of pharmacological agonism: The effect of E/[A] curve shape on agonist dissociation constant estimation. Br. J. Pharmacol. 84:561‐571. doi: 10.1111/j.1476‐5381.1985.tb12941.x.
  Bohn, L.M. and Schmid, C.L. 2010. Serotonin receptor signaling and regulation via β‐arrestins. Crit. Rev. Biochem. Mol. Biol. 45:555‐566. doi: 10.3109/10409238.2010.516741.
  Bohn, L., Lefkowitz, R.J., Gainetdinov, R.R., Peppel, K., Caron, M.G., and Lin, F.‐T. 1999. Enhanced morphine analgesia in mice lacking beta‐arrestin 2. Science 286:2495‐2498. doi: 10.1126/science.286.5449.2495.
  DeWire, S.M., Ahn, S., Lefkowitz, R.J., and Shenoy, S.K. 2007. Beta arrestins and cell signaling. Annu. Rev. Physiol. 69:483‐510. doi: 10.1146/annurev.physiol.69.022405.154749.
  Feng, X., Wang, W., Liu, J., and Liu, Y. 2011. β‐Arrestins: Multifunctional signaling adaptors in type 2 diabetes. Mol. Bio. Rep. 38:2517‐2528. doi: 10.1007/s11033‐010‐0389‐3.
  Ferrari, S.L., Pierroz, D.D., Glatt, V., Goddard, D.S., Bianchi, E.N., Lin, F.T., Manen, D., and Bouxsein, M.L. 2005. Bone response to intermittent parathyroid hormone is altered in mice bull for (beta) arrestin 2. Endocrinology 146:1854‐1862. doi: 10.1210/en.2004‐1282.
  Gesty‐Palmer, D., Flannery, P., Yaun, L., Corsino, L., Spurney, R., Lefkowitz, R.J., and Luttrell, L.M. 2009. A β‐arrestin‐biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci. Transl. Med. 1:1ra1. doi: 10.1126/scitranslmed.3000071.
  Godin, C.M. and Ferguson, S.S. 2012. Biased agonism of the angiotensin II type 1 receptor. Mini Rev. Med. Chem. 12:812‐816. doi: 10.2174/138955712800959134.
  Groer, C.E., Tidgewell, K., Moyer, R.A., Harding, W.W., Rothman, R.B., Prisinzano, T.E., and Bohn, L.M. 2007. An opioid agonist that does not induce mu opioid receptor‐ complexing. Mol. Pharmacol. 71:549‐557. doi: 10.1124/mol.106.028258.
  Hostrup, A., Christensen, G.L., Bentzen, B.H., Liang, B., Aplin, M., Grunnet, M., Hansen, J.L., and Jespersen, T. 2012. Functionally selective AT(1) receptor activation reduces ischemia reperfusion injury. Cell. Physiol. Biochem. 30:642‐652. doi: 10.1159/000341445.
  Ibrahim, I.A. and Kurose, H. 2012. β‐Arrestin‐mediated signaling improves the efficacy of therapeutics. J. Pharmacol. Sci. 118:408‐412. Arrestin interactions or receptor internalization. Mol. Pharmacol. 71; 549‐557. doi: 10.1254/jphs.11R10CP.
  Kenakin, T.P. 1995. Agonist‐receptor efficacy II: Agonist‐trafficking of receptor signals. Trends Pharmacol. Sci. 16:232‐238. doi: 10.1016/S0165‐6147(00)89032‐X.
  Kenakin, T. 2013. New concepts in pharmacological efficacy at 7TM receptors: IUPHAR review 2. Br. J. Pharmacol. 168:554‐575. doi: 10.1111/j.1476‐5381.2012.02223.x.
  Kenakin, T.P. and Morgan, P.H. 1989. Theoretical effects of single and multiple transducer receptor coupling proteins on estimates of the relative potency of agonists. Mol. Pharmacol. 35:214‐222.
  Kenakin, T.P. and Miller, L.J. 2010. Seven transmembrane receptors as shapeshifting proteins: The impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev. 62:265‐304. doi: 10.1124/pr.108.000992.
  Kenakin, T.P., Watson, C., Muniz‐Medina, V., Christopoulos, A., and Novick, S. 2012. A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 3:193‐203. doi: 10.1021/cn200111m.
  Kim, K.S., Abraham, D., Williams, B., Violin, J.D., Mao, L., and Rockman, H.A. 2012. β‐Arrestin‐biased AT1R stimulation promotes cell survival during acute cardiac injury. Am. J. Physiol. Heart Circ. Physiol. 303:H1001‐H1010. doi: 10.1152/ajpheart.00475.2012.
  Leach, K., Sexton, P.M., and Christopoulos, A. 2007. Allosteric GPCR modulators: Taking advantage of permissive receptor pharmacology. Trends Pharmacol. Sci. 28:382‐389. doi: 10.1016/j.tips.2007.06.004.
  Liu, J.J., Horst, R., Katritch, V., Stevens, R.C., and Wüthrich, K. 2012. Biased signaling pathways in β2‐adrenergic receptor characterized by 19F‐NMR. Science 335:1106‐1110. doi: 10.1126/science.1215802.
  Luttrell, L.M., Ferguson, S.S., Daaka, Y., Miller, W.E., Maudsley, S., Della Rocca, G.J., Lin, F., Kawakatsu, H., Owada, K., Luttrell, D.K., Caron, M.G., and Lefkowitz, R.J. 1999. β‐Arrestin‐dependent formation of β2 adrenergic receptor‐src protein kinase complexes. Science 283;655‐661. doi: 10.1126/science.283.5402.655.
  Lymperopoulos, A. 2012. Beta‐arrestin biased agonism/antagonism at cardiovascular seven transmembrane‐spanning receptors. Curr. Pharm. Des. 18:192‐198. doi: 10.2174/138161212799040475.
  Mailman, R.B. 2007. GPCR functional selectivity has therapeutic impact. Trends Pharmacol. Sci. 28:390‐396. doi: 10.1016/j.tips.2007.06.002.
  Noor, N., Patel, C.B., and Rockman, H.A. 2011. B arrestin: A signaling molecule and potential therapeutic target for heart failure. J. Mol. Cell Cardiol. 51:534‐541. doi: 10.1016/j.yjmcc.2010.11.005.
  Patel, C.B., Noor, N., and Rockman, H.A. 2010. Functional selectivity in adrenergic and angiotensin signaling systems. Mol. Pharmacol. 78:983‐992. doi: 10.1124/mol.110.067066.
  Perez, D.M. and Karnick, S.S. 2005. Multiple signaling states of G‐protein coupled receptors. Pharmacol. Rev. 57:147‐161. doi: 10.1124/pr.57.2.2.
  Raehal, K.M., Walker, J.K.L., and Bohn, L.M. 2005. Morphine side effects in β‐arrestin 2 knockout mice. J. Pharmacol. Exp. Ther. 314:1195‐1201. doi: 10.1124/jpet.105.087254.
  Shenoy, S.K. 2011. β‐Arrestin‐biased signaling by the β‐adrenergic receptors. Curr. Top. Membr. 67:51‐78. doi: 10.1016/B978‐0‐12‐384921‐2.00003‐3.
  Tilley, D.G. 2011a. G protein–dependent and G protein‐independent signaling pathways and their impact on cardiac function. Circ. Res. 109:217‐230. doi: 10.1161/CIRCRESAHA.110.231225.
  Tilley, D.G. 2011b. Functional relevance of biased signaling at the angiotensin II type 1 receptor. Endocr. Metab. Immune Disord. Drug Targets 11:99‐111. doi: 10.2174/187153011795564133.
  Viladarga, J.P., Gardella, T.J., Wehbi, V.L., and Feinstein, T.N. 2012. Non canonical signaling of the PTH receptor. Trends Pharmacol. Sci. 33:423‐431. doi: 10.1016/j.tips.2012.05.004.
  Walters, R.W., Shukla, A., Kovacs, J.J., Violin, J.D., DeWire, S.M., Lam, C.M., Chen, J.R., Muehlbauer, M.J., Whalen, E.J., and Lefkowitz, R.J. 2009. β‐Arrestin 1 mediates nicotinic acid‐induced flushing, but not its antilipolytic effect, in mice. J. Clin. Invest. 119:1312‐1321. doi: 10.1172/JCI36806.
  Walwyn, W., Evans, C.J., and Hales, T.G. 2007. Beta arrestin2 and c‐Src regulate the constitutive activity and recycling of mu opioid receptors in dorsal root ganglion neurons. J. Neurosci. 27:5092‐5104. doi: 10.1523/JNEUROSCI.1157‐07.2007.
  Xu, H., Partilla, J.S., Wang, X., Rutherford, J.M., Tidgewell, K., Prisinzano, T.E., Bohn, L.M., and Rothman, R.B. 2007. A comparison of noninternalizing (herkinorin) and internalizing (DAMGO) μ‐opioid agonists on cellular markers related to opioid tolerance and dependence. Synapse 61:166‐175. doi: 10.1002/syn.20356.
  Zhan, X., Kaoud, T.S., Dalby, K.N., and Gurevich, V.V. 2011. Nonvisual arrestins function as simple scaffolds assembling the MKK4‐JNK3a2 signaling complex. Biochemistry 50:10520‐10529. doi: 10.1021/bi201506g.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library