Models of Inflammation: Carrageenan‐ or Complete Freund's Adjuvant (CFA)–Induced Edema and Hypersensitivity in the Rat

Kenneth E. McCarson1

1 Kansas Intellectual and Developmental Disabilities Research Center (KIDDRC), Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 5.4
DOI:  10.1002/0471141755.ph0504s70
Online Posting Date:  September, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Animal models of inflammation are used to assess the production of inflammatory mediators at sites of inflammation, the processing of pain sensation at CNS sites, the anti‐inflammatory properties of agents such as nonsteroidal anti‐inflammatory drugs (NSAIDs), and the efficacy of putative analgesic compounds in reversing cutaneous hypersensitivity. Detailed in this unit are methods to elicit and measure carrageenan‐ and complete Freund's adjuvant (CFA)–induced cutaneous inflammation. Due to possible differences between the dorsal root sensory system and the trigeminal sensory system, injections into either the footpad or vibrissal pad are described. In this manner, cutaneous inflammation can be assessed in tissue innervated by the lumbar dorsal root ganglion neurons (footpad) or by the trigeminal ganglion neurons (vibrissal pad). © 2015 by John Wiley & Sons, Inc.

Keywords: inflammation; carrageenan; complete Freund's adjuvant; edema; nociception

PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • Male or female rats weighing >100 g upon arrival (e.g., Harlan;
  • 0.5% to 2.0% (w/v) carrageenan solution (see recipe)
  • Complete Freund's adjuvant (CFA; see recipe)
  • 0.9% (w/v) saline, sterile
  • 70% (v/v) ethanol (or sterile alcohol injection prep pads)
  • Inhalational anesthesia [e.g., 5% (v/v) isoflurane], optional
  • Betadine (optional)
  • Solid‐bottom cages
  • Scales, accurate to 0.1 and 0.0001 g
  • 27‐G to 30 G, ½‐in needle
  • 1‐ml syringes
  • Kimwipes
  • Clear plastic box for the inhalational anesthesia or animal restrainer
  • 6‐mm biopsy punch
  • Additional reagents and equipment for euthanizing the animal [see Donovan and Brown, , and appendix 4A(Jones‐Bolin, )]
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Allen, A.L., Cortright, D.N., and McCarson, K.E. 2003. Formalin‐ or adjuvant‐induced peripheral inflammation increases neurokinin‐1 receptor gene expression in the mouse. Brain Res. 961:147‐152.
  Bereiter, D.A., Hargreaves, K.M., and Hu, J.W. 2009. Trigeminal mechanisms of nociception: Peripheral and brain stem organization. In Handbook of the Senses, Vol. 5, Science of Pain (M.C. Bushnell and A.I. Basbaum, eds.) pp. 435‐460. Elsevier, San Diego.
  Brittain, J., Duarte, D., Wilson, S., Wang, Y., Zhu, W., Ballard, C., Khanna, M., Brustovetsky, T., Schmutzler, B., Xiong, W., Ripsch, M., Ashpole, N., Hudmon, A., Meroueh, S., Hingtgen, C., Brustovesky, N., Jim, X., Vasko, M., Fehrenbacher, J., Hurley, J., White, F., and Khanna, R. 2011. Suppression of inflammatory and neuropathic pain by uncoupling CRMP‐2 from the presynaptic Ca2+ channel complex. Nat. Med. 17:822‐829.
  Chang, M., Smith, S., Thorpe, A., Barratt, M.J., and Karim, F. 2010. Evaluation of phenoxybenzamine in the CFA model of pain following gene expression studies and connectivity mapping. Mol. Pain 6:56.
  Chaplan, S.R., Bach, F.W., Pogrel, J.W., Chung, J.M., and Yaksh, T.L. 1994. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53:55‐63.
  Cobos, E.J., Ghasemlou, N., Araldi, D., Segal, D., Duong, K., and Woolf, C.J. 2012. Inflammation‐induced decrease in voluntary wheel running in mice: A nonreflexive test for evaluating inflammatory pain and analgesia. Pain 153:876‐884.
  Cunha, T.M., Verri, W.A. Jr., Vivancos, G.G., Moreira, I.F., Reis, S., Parada, C.A., Cunha, F.Q., and Ferreira, S.H. 2004. An electronic pressure‐meter nociception paw test for mice. Braz. J. Med. Biol. Res. 37:401‐407.
  Donovan, J. and Brown, P. 2006. Euthanasia. Curr. Protoc. Immunol. 73:1.8.1‐1.8.4.
  Duric, V. and McCarson, K.E. 2006. Effects of analgesic or antidepressant drugs on pain‐ or stress‐evoked hippocampal and spinal neurokinin‐1 receptor and brain‐derived neurotrophic factor gene expression in the rat. J. Pharmacol. Exp. Ther. 319:1235‐1243.
  Gris, G., Merlos, M., Vela, J.M., Zamanillo, D., and Portillo‐Salido, E. 2014. S1RA, a selective sigma‐1 receptor antagonist, inhibits inflammatory pain in the carrageenan and complete Freund's adjuvant models in mice. Behav. Pharmacol. 25:226‐235.
  Hargreaves, K., Dubner, R., Brown, F., Flores, C., and Joris, J. 1988. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77‐88.
  Iadarola, M.J., Brady, L.S., Draisci, G., and Dubner, R. 1988. Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: Stimulus specificity, behavioral parameters and opioid receptor binding. Pain 35:313‐326.
  Jones‐Bolin, S. 2012. Guidelines for the care and use of laboratory animals in biomedical research. Curr. Protoc. Pharmacol. 59:A.4B.1‐A.4B.9.
  Krzyzanowska, A., Pittolo, S., Cabrerizo, M., Sánchez‐López, J., Krishnasamy, S., Venero, C., and Avendaño, C. 2011. Assessing nociceptive sensitivity in mouse models of inflammatory and neuropathic trigeminal pain. J. Neurosci. Methods 201:46‐54.
  Kusuda, R., Cadetti, F., Ravanelli, M.I., Sousa, T.A., Zanon, S., De Lucca, F.L., and Lucas, G. 2011. Differential expression of microRNAs in mouse pain models. Mol. Pain 7:17.
  Ma, M.T., Yeo, J.F., Shui, G., Wenk, M.R., and Ong, W.Y. 2012. Systems wide analyses of lipids in the brainstem during inflammatory orofacial pain—evidence of increased phospholipase A(2) activity. Eur. J. Pain 16:38‐48.
  McCarson, K.E. and Enna, S.J. 1999. Nociceptive regulation of GABA(B) receptor gene expression in rat spinal cord. Neuropharmacology 38:1767‐1773.
  Mirshafiey, A., Cuzzocrea, S., Rehm, B., Mazzon, E., Saadat, F., and Sotoude, M. 2005. Treatment of experimental arthritis with M2000, a novel designed non‐steroidal anti‐inflammatory drug. Scand. J. Immunol. 61:435‐441.
  Morgan, J.R. and Gebhart, G.F. 2008. Characterization of a model of chronic orofacial hyperalgesia in the rat: Contribution of NA(V) 1.8. J. Pain 9:522‐531.
  Okumura, M., Iwata, K., Yasuda, K., Inoue, K., Shinoda, M., Honda, K., Shibuta, K., Yasuda, M., and Kondo, E. 2010. Alternation of gene expression in trigeminal ganglion neurons following complete Freund's adjuvant or capsaicin injection into the rat face. J. Mol. Neurosci. 42:200‐209.
  Otterness, I.G. and Moore, P.F. 1988. Carrageenan foot edema test. Methods Enzymol. 162:320‐327.
  Ren, K. and Dubner, R. 1999. Inflammatory models of pain and hyperalgesia. ILAR J. 40:111‐118.
  Schreiber, K.L., Beitz, A.J., and Wilcox, G.L. 2008. Activation of spinal microglia in a murine model of peripheral inflammation‐induced, long‐lasting contralateral allodynia. Neurosci. Lett. 440:63‐67.
  Singh, H. and Ghosh, M.N. 1968. Modified plethysmometer for measuring foot volume of unanesthetized rats. J. Pharm. Pharmacol. 20:316‐317.
  Soignier, R.D., Taylor, B.K., Baiamonte, B.A., Lee, F.A., Paul, D., and Gould H.J. 3rd. 2011. Measurement of CFA‐induced hyperalgesia and morphine‐induced analgesia in rats: Dorsal vs. plantar mechanical stimulation of the hindpaw. Pain Med. 12:451‐458.
  Stein, C., Millan, M.J., and Herz, A. 1988. Unilateral inflammation of the hindpaw in rats as a model of prolonged noxious stimulation: Alterations in behavior and nociceptive thresholds. Pharmacol. Biochem. Behav. 31:445‐451.
  Tsuruoka, M., Arai, Y.C., Nomura, H., Matsutani, K., and Willis, W.D. 2003. Unilateral hindpaw inflammation induces bilateral activation of the locus coeruleus and the nucleus subcoeruleus in the rat. Brain Res. Bull. 61:117‐123.
  Vazquez, E., Navarro, M., Salazar, Y., Crespo, G., Bruges, G., Osorio, C., Tortorici, V., Vanegas, H., and López, M. 2015. Systemic changes following carrageenan‐induced paw inflammation in rats. Inflamm. Res. 64:333‐342.
  Walder, R.Y., Wattiez, A.S., White, S.R., Marquez de Prado, B., Hamity, M.V., and Hammond D.L. 2014. Validation of four reference genes for quantitative mRNA expression studies in a rat model of inflammatory injury. Mol. Pain 10:55.
  Walker, K., Bowes, M., Panesar, M., Davis, A., Gentry, C., Kesingland, A., Gasparini, F., Spooren, W., Stoehr, N., Pagano, A., Flor, P.J., Vranesic, I., Lingenhoehl, K., Johnson, E.C., Varney, M., Urban, L., and Kuhn, R. 2001. Metabotropic glutamate receptor subtype 5 (mGlu5) and nociceptive function. I. Selective blockade of mGlu5 receptors in models of acute, persistent and chronic pain. Neuropharmacology 40:1‐9.
  Winter, C.A., Risley, E.A., and Nuss, G.W. 1962. Carrageenan‐induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med. 111:544‐547.
  Woolfe, G. and MacDonald, A. 1944. The evaluation of the analgesic action of pethidine hydrochloride (Demerol). J. Pharmacol. Exp. Ther. 80:300‐307.
  Yeo, J.F., Ling, S.F., Tang, N., and Ong, W.Y. 2008. Antinociceptive effect of CNS peroxynitrite scavenger in a mouse model of orofacial pain. Exp. Brain Res. 184:435‐438.
  Zhang, R.X., Lao, L., Wang, X., Ren, K., and Berman, B.B. 2004. Electroacupuncture combined with indomethacin enhances antihyperalgesia in inflammatory rats. Pharmacol. Biochem. Behav. 78:793‐797.
  Zhao, X.H., Zhang, T., and Li, Y.Q. 2015. The up‐regulation of spinal Toll‐like receptor 4 in rats with inflammatory pain induced by complete Freund's adjuvant. Brain Res. Bull. 111:97‐103.
Key References
  Winter, C.A., Risley, E.A., and Silber, R.H. 1968. Antiinflammatory activity of indomethacin and plasma corticosterone in rats. J. Pharmacol. Exp. Ther. 162:196‐201.
  A seminal study that is still routinely cited in original research papers.
PDF or HTML at Wiley Online Library