Models of Inflammation: Carrageenan Air Pouch

Djane B. Duarte1, Michael R. Vasko2, Jill C. Fehrenbacher3

1 Pharmacy Department, Health Sciences School, University of Brasília, 2 Department of Anesthesiology, Indiana University School of Medicine, Indianapolis, Indiana, 3 Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 5.6
DOI:  10.1002/0471141755.ph0506s72
Online Posting Date:  March, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The subcutaneous air pouch is an in vivo model that can be used to study the components of acute and chronic inflammation, the resolution of the inflammatory response, the oxidative stress response, and potential therapeutic targets for treating inflammation. Injection of irritants into an air pouch in rats or mice induces an inflammatory response that can be quantified by the volume of exudate produced, the infiltration of cells, and the release of inflammatory mediators. The model presented in this unit has been extensively used to identify potential anti‐inflammatory drugs. © 2016 by John Wiley & Sons, Inc.

Keywords: inflammation; edema; carrageenan; air pouch; animal model; inflammatory mediator; PGE2; TNF alpha; oxidative stress

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: AIR Pouch Model in the Rat
  • Alternate Protocol 1: Air Pouch Model in the Mouse
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: AIR Pouch Model in the Rat

  Materials
  • Rats weighing ∼150 g or mice weighing ∼20 to 25 g
  • Inhalation anesthetic (e.g., 5% [v/v] isoflurane; IsoFlo, Abbott)
  • 70% (v/v) ethanol
  • 0.9% (w/v) saline, sterile
  • 2% carrageenan solution (see recipe)
  • Lavage solution (see recipe)
  • ELISA kit(s) specific for inflammatory mediators (e.g., TNF‐α, IL‐1β, IL‐6, IL‐10, prostaglandins; Thermo Fisher Scientific)
  • Isotonic phosphate‐buffered saline (PBS; Life Technologies, cat. no. 10010‐031), ice cold
  • Differential staining kit (e.g., Hemacolor; EMD Millipore, cat. no. 111674)
  • 5‐, 10‐, and 20‐ml syringes, sterile
  • 18‐, 20‐ and 23‐G, 1‐ to 1.5‐in. (2.5‐ to 3.8‐cm) needles, sterile
  • 0.2‐μm syringe filters, sterile
  • Anesthetic chamber or chemical fume hood
  • Animal hair clippers
  • Hemostat and scissors
  • 15‐ml conical centrifuge tubes, sterile
  • Transfer pipets, sterile
  • Cell counter or hemacytometer
  • Benchtop centrifuge (for 15‐ml conical tubes)
  • Additional reagents and equipment for euthanizing the animal (Donovan and Brown, )
NOTE: Besides carrageenan, other irritants such as zymosan or lipopolysaccharide (LPS) can be used to induce inflammation in this model.CAUTION: Make certain that excess anesthetic does not vent into the room; use an appropriate anesthesia chamber apparatus or work in a chemical fume hood.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Ariel, A. and Serhan, C.N. 2007. Resolvins and protectins in the termination program of acute inflammation. Trends Immunol. 28:176‐183. doi: 10.1016/j.it.2007.02.007.
  Castro, A.G., Esaguy, N., Macedo, P.M., Aguas, A.P., and Silva, M.T. 1991. Live but not heat‐killed mycobacteria cause rapid chemotaxis of large numbers of eosinophils in vivo and are ingested by the attracted granulocytes. Infect. Immun. 59:3009‐3014. doi: 0019-9567/91/093009-06$02.00/0.
  Delano, D.L., Montesinos, M.C., D'Eustachio, P., Wiltshire, T., and Cronstein, B.N. 2005. An interaction between genetic factors and gender determines the magnitude of the inflammatory response in the mouse air pouch model of acute inflammation. Inflammation 29:1‐7. doi: 10.1007/s10753-006-8962-6.
  Donovan, J., Brown, P. 2006. Euthanasia. Curr. Protoc. Immunol. 73:1.8.1‐1.8.4. doi: 10.1002/0471142735.im0108s73.
  Edwards, J.C., Sedgwick, A.D., and Willoughby, D.A. 1981. The formation of a structure with the features of synovial lining by subcutaneous injection of air: An in vivo tissue culture system. J. Pathol. 134:147‐156. doi: 10.1002/path.1711340205.
  Eteraf‐Oskouei, T., Allahyari, S., Akbarzadeh‐Atashkhosrow, A., Delazar, A., Pashaii, M., Gan, S.H., and Najafi, M. 2015. Methanolic extract of Ficus carica linn. leaves exerts antiangiogenesis effects based on the rat air pouch model of inflammation. Evid. Based Complement Alternat. Med. 2015:760405. doi: 10.1155/2015/760405.
  Eteraf‐Oskouei, T., Najafi, M., and Gharehbagheri, A. 2014. Natural honey: A new and potent anti‐angiogenic agent in the air‐pouch model of inflammation. Drug Res. (Stuttg.) 64:530‐536. doi: 10.1055/s-0033-1363229.
  Garcia‐Ramallo, E., Marques, T., Prats, N., Beleta, J., Kunkel, S.L., and Godessart, N. 2002. Resident cell chemokine expression serves as the major mechanism for leukocyte recruitment during local inflammation. J. Immunol. 169:6467‐6473. doi: 10.4049/jimmunol.169.11.6467.
  Gurgel, J.A., Lima‐Junior, R.C., Rabelo, C.O., Pessoa, B.B., Brito, G.A., and Ribeiro, R.A. 2013. Amitriptyline, clomipramine, and maprotiline attenuate the inflammatory response by inhibiting neutrophil migration and mast cell degranulation. Rev. Bras. Psiquiatr. 35:387‐392. doi: 10.1590/1516-4446-2012-0977.
  Jain, M. and Parmar, H.S. 2011. Evaluation of antioxidative and anti‐inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflamm. Res. 60:483‐491. doi: 10.1007/s00011-010-0295-0.
  Kadl, A., Galkina, E., and Leitinger, N. 2009. Induction of CCR2‐dependent macrophage accumulation by oxidized phospholipids in the air‐pouch model of inflammation. Arthritis Rheum. 60:1362‐1371. doi: 10.1002/art.24448.
  Leary, S., Underwood, W., Anthony, R., Cartner, S., Corey, D., Grandin, T., Greenacre, C.B., Gwaltney‐Bran, S., McCrackin, M.A., Meyer, R., and Miller, D. 2013. AVMA Guidelines for the Euthanasia of Animals: 2013 Edition. American Veterinary Medical Association, Schaumburg, Ill.
  Martin, S.W., Stevens, A.J., Brennan, B.S., Davies, D., Rowland, M., and Houston, J.B. 1994. The six‐day‐old rat air pouch model of inflammation: Characterization of the inflammatory response to carrageenan. J. Pharmacol. Toxicol. Methods 32:139‐147. doi: 10.1016/1056-8719(94)90067-1.
  Masferrer, J.L., Zweifel, B.S., Manning, P.T., Hauser, S.D., Leahy, K.M., Smith, W.G., Isakson, P.C., and Seibert, K. 1994. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. U.S.A. 91:3228‐3232. doi: 10.1073/pnas.91.8.3228.
  Mattei, R.A., Dalmarco, E.M., and Fröde, T.S. 2015. Etanercept administration prevents the inflammatory response induced by carrageenan in the murine air pouch model. Naunyn Schmiedebergs Arch. Pharmacol. 388:1247‐1257. doi: 10.1007/s00210-015-1162-x.
  Nakamura, H., Herzenberg, L.A., Bai, J., Araya, S., Kondo, N., Nishinaka, Y., Herzenberg, L.A., and Yodoi, J. 2001. Circulating thioredoxin suppresses lipopolysaccharide‐induced neutrophil chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 98:15143‐15148. doi: 10.1073/pnas.191498798.
  Romano, M., Faggioni, R., Sironi, M., Sacco, S., Echtenacher, B., Di Santo, E., Salmona, M., and Ghezzi, P. 1997. Carrageenan‐induced acute inflammation in the mouse air pouch synovial model. Role of tumour necrosis factor. Mediators Inflamm. 6:32‐38. doi: 10.1080/09629359791901.
  Sedgwick, A.D., Koh, M.S., Willoughby, D.A., and Pelletier, M. 1981. Effects of sera and exudate from carrageenan‐treated rats on two models of acute inflammation. Agents Actions 11:477‐481. doi: 10.1007/BF02004709.
  Sedgwick, A.D. and Lees, P. 1986. A comparison of air pouch, sponge and pleurisy models of acute carrageenan inflammation in the rat. Agents Actions 18:439‐446. doi: 10.1007/BF01965009.
  Sedgwick, A.D., Sin, Y.M., Edwards, J.C., and Willoughby, D.A. 1983. Increased inflammatory reactivity in newly formed lining tissue. J. Pathol. 141:483‐495. doi: 10.1002/path.1711410406.
  Selye, H. 1953. On the mechanism through which hydrocortisone affects the resistance of tissues to injury; an experimental study with the granuloma pouch technique. J. Am. Med. Assoc. 152:1207‐1213. doi: 10.1001/jama.1953.63690130001006.
  Sin, Y.M., Sedgwick, A.D., Chea, E.P., and Willoughby, D.A. 1986. Mast cells in newly formed lining tissue during acute inflammation: A six day air pouch model in the mouse. Ann. Rheum. Dis. 45:873‐877. doi: 10.1136/ard.45.10.873.
  Sin, Y.M., Sedgwick, A.D., and Willoughby, D.A. 1984. Immune inflammation in newly developing facsimile synovia. Int. Arch. Allergy Appl. Immunol. 73:286‐287. doi: 10.1159/000233484.
  Vane, J.R., Mitchell, J.A., Appleton, I., Tomlinson, A., Bishop‐Bailey, D., Croxtall, J., and Willoughby, D.A. 1994. Inducible isoforms of cyclooxygenase and nitric‐oxide synthase in inflammation. Proc. Natl. Acad. Sci. U.S.A. 91:2046‐2050. doi: 10.1073/pnas.91.6.2046.
  Vigil, S.V., de Liz, R., Medeiros, Y.S., and Frode, T.S. 2008. Efficacy of tacrolimus in inhibiting inflammation caused by carrageenan in a murine model of air pouch. Transpl. Immunol. 19:25‐29. doi: 10.1016/j.trim.2008.01.003.
  Whiteley, P.E. and Dalrymple, S.A. 1998. Models of inflammation: Carrageenan air pouch in the rat. Curr. Protoc. Pharmacol. 5.6.1‐5.6.6. doi: 10.1002/0471141755.ph0506s00.
  Yoon, S.Y., Kwon, Y.B., Kim, H.W., Roh, D.H., Kang, S.Y., Kim, C.Y., Han, H.J., Kim, K.W., Yang, I.S., Beitz, A.J., and Lee, J.H. 2005. Intrathecal neostigmine reduces the zymosan‐induced inflammatory response in a mouse air pouch model via adrenomedullary activity: Involvement of spinal muscarinic type 2 receptors. Neuropharmacology 49:275‐282. doi: 10.1016/j.neuropharm.2004.12.024.
  Yoshino, S., Bacon, P.A., Blake, D.R., Scott, D.L., Wainwright, A.C., and Walton, K.W. 1984. A model of persistent antigen‐induced chronic inflammation in the rat air pouch. Br. J. Exp. Pathol. 65:201‐214.
  Zhao, C., Sardella, A., Chun, J., Poubelle, P.E., Fernandes, M.J., and Bourgoin, S.G. 2011. TNF‐α promotes LPA1‐ and LPA3‐mediated recruitment of leukocytes in vivo through CXCR2 ligand chemokines. J. Lipid. Res. 52:1307‐1318. doi: 10.1194/jlr.M008045.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library