Rodent Test of Attention and Impulsivity: The 5‐Choice Serial Reaction Time Task

Guy A. Higgins1, Leo B. Silenieks2

1 Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, 2 InterVivoSolutions Inc., Toronto, Ontario
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 5.49
DOI:  10.1002/cpph.27
Online Posting Date:  September, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The 5‐choice serial reaction time task (5‐CSRTT) is employed extensively to measure attention in rodents. The assay involves animals trained to respond to a brief, unpredictable visual stimulus presented in one of five locations. The effects of experimental manipulations on response speed and choice accuracy are measured, and each related to attentional performance. The 5‐CSRTT is also used to measure motor impulsivity. Adapted from a human task, the 5‐CSRTT can be employed with rodents or primates, highlighting its translational value. Another strength of this procedure is its adaptability to task modification. An example is the 5‐choice continuous performance task, which has both target and non‐target trial types. Overall, the 5‐CSRTT has proven to be valuable for drug discovery efforts aimed at identifying new agents for the treatment of central nervous system disorders and for further understanding the neurobiological processes of attention and impulsivity. Its flexibility offers considerable scope to the experimenter, and in this respect the task continues to evolve. © 2017 by John Wiley & Sons, Inc.

Keywords: attention; cognition; methodology; rat; mouse; drug discovery; impulsivity

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: 5‐Choice Serial Reaction Time Task in the Rat
  • Alternate Protocol 1: 5‐Choice Serial Reaction Time Task: Experimental Manipulations in the Rat
  • Alternate Protocol 2: 5‐Choice Serial Reaction Time Task in the Mouse
  • Alternate Protocol 3: 5‐Choice Serial Reaction Time Task: Experimental Manipulations in the Mouse
  • Alternate Protocol 4: 5‐Choice Continuous Performance Task in the Rat
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: 5‐Choice Serial Reaction Time Task in the Rat

  • 200‐ to 250‐g male rats (e.g., Charles River; typically a pigmented strain such as hooded Lister or Long Evans is used; also see Troubleshooting)
  • Standard rodent chow (e.g., LabDiet 5001 rodent diet)
  • Food reward pellets (e.g., Dustless precision pellets, 45 mg, rodent, purified; BioServ)
  • Transparent plastic cages (e.g., Makrolon® 44 × 28 × 19–cm) containing wood shavings (e.g., NEPCO Beta Chip) or corn cob bedding (e.g., The Andersons Bed‐o'Cob)
  • Purpose‐built operant conditioning chambers (approximate chamber dimensions 25‐cm wide × 30‐cm long; see Critical Parameters and Troubleshooting) and associated software for conducting 5‐choice serial reaction time task (e.g., Med‐PC® Software Suite)
  • Permanent ink marker (e.g., Sharpie permanent non‐toxic marker)
  • Syringes for compound administration (e.g., Terumo type BS‐025)
  • Needles for intraperitoneal (i.p.) or subcutaneous (s.c.) injections (e.g., BD Precision Glide needle 23‐G × 3/4‐in. for rats and 25‐G × 5/8‐in. for mice)
  • Luer gastric probes with oval extremity for oral administration of test agents (e.g., 16 × 3 in., 76.2‐mm reusable oral gavage needles for rats or 20 × 1‐1/2 in., 38.1 mm reusable oral gavage needles for mice; Cadence Science)
  • Metric balance (e.g., Mettler Toledo)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Amitia, N., & Markou, A. (2010). Disruption of performance in the five‐choice serial reaction time task induced by administration of N‐methyl‐D‐aspartate receptor antagonists: Relevance to cognitive dysfunction in schizophrenia. Biological Psychiatry, 68, 5–16. doi: 10.1016/j.biopsych.2010.03.004.
  Amitia, N., & Markou, A. (2011). Comparative effects of different test day challenges on performance in the 5‐choice serial reaction time task. Behavioral Neuroscience, 125, 764–774. doi: 10.1037/a0024722.
  Amitai, N., Semenova, S., & Markou, A. (2007). Cognitive‐disruptive effects of the psychotomimetic phencyclidine and attenuation by atypical antipsychotic medications in rats. Psychopharmacology (Berl), 193, 521–537. doi: 10.1007/s00213‐007‐0808‐x.
  Barnes, S. A., Young, J. W., & Neill, J. C. (2012). Rats tested after a washout period from sub‐chronic PCP administration exhibited impaired performance in the 5‐Choice Continuous Performance Test (5C‐CPT) when the attentional load was increased. Neuropharmacology, 62, 1432–1441. doi: 10.1016/j.neuropharm.2011.04.024.
  Benn, A., & Robinson, E. S. (2014). Investigating glutamatergic mechanism in attention and impulse control using rats in a modified 5‐choice serial reaction time task. PLoS One, 9, e115374. doi: 10.1371/journal.pone.0115374.
  Bizarro, L., Patel, S., Murtagh, C., & Stolerman, I. P. (2004). Differential effects of psychomotor stimulants on attentional performance in rats: Nicotine, amphetamine, caffeine and methylphenidate. Behavioural Pharmacology, 15, 195–206. doi: 10.1097/01.fbp.0000131574.61491.50
  Blondeau, C., & Dellu‐Hagedorn, F. (2007). Dimensional analysis of ADHD subtypes in rats. Biological Psychiatry, 61, 1340–1350. doi: 10.1016/j.biopsych.2006.06.030.
  Blondel, A., Sanger, D. J., & Moser, P. C. (2000). Characterization of the effects of nicotine in the five‐choice serial reaction time task in rats: Antagonist studies. Psychopharmacology, 149, 293–305. doi: 10.1007/s002130000378.
  Burton, C. L., & Fletcher, P. J. (2012). Age and sex differences in impulsive action in rats: The role of dopamine and glutamate. Behavioural Brain Research, 230, 21–33. doi: 10.1016/j.bbr.2012.01.046.
  Carli, M., Evenden, J. L., & Robbins, T. W. (1985). Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention. Nature, 313, 679–682. doi: 10.1038/313679a0.
  Carli, M., Robbins, T. W., Evenden, J. L., & Everitt, B. J. (1983). Effects of lesions to ascending noradrenergic neurons on performance of a 5‐choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behavioural Brain Research, 9, 361–380. doi: 10.1016/0166‐4328(83)90138‐9.
  Carli, M., & Samanin, R. (1992). Serotonin2 receptor agonists and serotonergic anorectic drugs affect rats’ performance differently in a five‐choice serial reaction time task. Psychopharmacology, 106, 228–234. doi: 10.1007/BF02801977.
  Carli, M., & Samanin, R. (2000). The 5‐HT1A receptor agonist 8‐OH DPAT reduces rats’ accuracy of attentional performance and enhances impulsive responding in a five‐choice serial reaction time task: Role of presynaptic 5‐HT1A receptors. Psychopharmacology, 149, 259–268. doi: 10.1007/s002139900368.
  Chudasama, Y., Passetti, F., Rhodes, S. E., Lopian, D., Desai, A., & Robbins, T. W. (2003). Dissociable aspects of performance on the 5‐choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: Differential effects on selectivity, impulsivity and compulsivity. Behavioural Brain Research, 146, 105–119. doi: 10.1016/j.bbr.2003.09.020.
  Cole, B. J., & Robbins, T. W. (1987). Amphetamine impairs the discriminative performance of rats with dorsal bundle lesions on a 5‐choice serial reaction time task: New evidence for central dopaminergic‐noradrenergic interactions. Psychopharmacology, 91, 458–466. doi: 10.1007/BF00216011.
  Cope, Z. A., Halberstadt, A. L., van Enkhuizen, J., Flynn, A. D., Breier, M., Swerdlow, N. R., … Young, J. W. (2016). Premature responses in the five‐choice serial reaction time task reflect rodents' temporal strategies: Evidence from no‐light and pharmacological challenges. Psychopharmacology, 233, 3513–3525. doi: 10.1007/s00213‐016‐4389‐4.
  Dalley, J. W., Fryer, T. D., Brichard, L., Robinson, E. S., Theobald, D. E., Lääne, K., … Robbins, T. W. (2007). Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 315(5816), 1267–1270. doi: 10.1126/science.1137073.
  Dalley, J. W., Theobald, D. E., Pereira, E. A., Li, P. M., & Robbins, T. W. (2002). Specific abnormalities in serotonin release in the prefrontal cortex of isolation‐reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology, 164, 329–340. doi: 10.1007/s00213‐002‐1215‐y.
  Davies, W., Humby, T., Isles, A. R., Burgoyne, P. S., & Wilkinson, L. S. (2007). X‐Monosomy effects on visuospatial attention in mice: A candidate gene and implications for turner syndrome and attention deficit hyperactivity disorder. Biological Psychiatry, 61, 1351–1360. doi: 10.1016/j.biopsych.2006.08.011.
  Day, M., Pan, J. B., Buckley, M. J., Cronin, E., Hollingsworth, P. R., Hirst, W. D., … Fox, G. B. (2007). Differential effects of ciproxifan and nicotine on impulsivity and attention measures in the 5‐choice serial reaction time test. Biochemical Pharmacology, 73, 1123–1134. doi: 10.1016/j.bcp.2006.12.004.
  De Bruin, N. M. W. J., Fransen, F., Duytschaever, H., Grantham, C., & Megens, A. A. H. P. (2006). Attentional performance of (C57BL/6J × 129 Sv)F2 mice in the five‐choice serial reaction time task. Physiology & Behavior, 89, 692–703. doi: 10.1016/j.physbeh.2006.08.009.
  Didriksen, M., & Christensen, A. V. (1993). Differences in performance in three strains of rats in a 5‐choice serial reaction time task. Pharmacology & Toxicology, 72, 66–68. doi: 10.1111/j.1600‐0773.1993.tb01341.x.
  Fizet, J., Cassel, J‐C., Kelche, C., & Meunier, H. (2016). A review of the 5‐choice serial reaction time (5‐CSRT) task in different vertebrate models. Neuroscience and Biobehavioral Reviews, 71, 135–153. doi: 10.1016/j.neubiorev.2016.08.027.
  Fletcher, P. J., Tampakeras, M., Sinyard, J., & Higgins, G. A. (2007). Opposing effects of 5‐HT2A and 5‐HT2C receptor antagonists in the rat and mouse on premature responding in the five‐choice serial reaction time test. Psychopharmacology, 195, 223–234. doi: 10.1007/s00213‐007‐0891‐z.
  Greco, B., Invernizzi, R. W., & Carli, M. (2005). Phencyclidine‐induced impairment in attention and response control depends on the background genotype of mice: Reversal bt the mGLU2/3 receptor agonist LY379268. Psychopharmacology, 179, 68–76. doi: 10.1007/s00213‐004‐2127‐9.
  Grottick, A. J., & Higgins, G. A. (2000). Effect of subtype selective nicotine compounds on attention as assessed by the five‐choice serial reaction time task. Behavioural Brain Research, 117, 197–208. doi: 10.1016/S0166‐4328(00)00305‐3.
  Grottick, A. J., & Higgins, G. A. (2002). Assessing a vigilance decrement in aged rats: Effects of pre‐feeding, task manipulation, and psychostimulants. Psychopharmacology, 164, 33–41. doi: 10.1007/s00213‐002‐1174‐3.
  Grottick, A. J., Haman, M., Wyler, R., & Higgins, G. A. (2003). Reversal of a vigilance decrement in the aged rat by subtype‐selective nicotinic ligands. Neuropsychopharmacology, 28, 880–887. doi: 10.1038/sj.npp.1300102.
  Guillem, K., Bloem, B., Poorthuis, R. B., Loos, M., Smit, A. B., Maskos, U., … Mansvelder, H. D. (2011). Nicotinic acetylcholine receptor β2 subunits in the medial prefrontal cortex control attention. Science, 333(6044), 888–891. doi: 10.1126/science.1207079.
  Hahn, B., Riegger, K. E., & Elmer, G. I. (2016). Strain dependency of the effects of nicotine and mecamylamine in a rat model of attention. Psychopharmacology, 233, 1427–1434. doi: 10.1007/s00213‐016‐4236‐7.
  Hahn, B., Shoaib, M., & Stolerman, I. P. (2002a). Nicotine‐induced enhancement of attention in the five‐choice serial reaction time task: The influence of task demands. Psychopharmacology, 162, 129–137. doi: 10.1007/s00213‐002‐1005‐6.
  Hahn, B., Shoaib, M., & Stolerman, I. P. (2002b). Effects of dopamine receptor antagonists on nicotine‐induced attentional enhancement. Behavioural Pharmacology, 13(8):621‐632. doi: 10.1097/01.fbp.0000046506.84018.28.
  Hahn, B., Sharples, C. G. V., Wonnacott, S., Shoaib, M., & Stolerman, I. P. (2003). Attentional effects of nicotinic agonists in rats. Neuropharmacology, 44, 1054–1067. doi: 10.1016/S0028‐3908(03)00099‐6.
  Hahn, B., & Stolerman, I. P. (2005). Modulation of nicotine‐induced attentional enhancement in rats by adrenoceptor antagonists. Psychopharmacology, 177, 438–447. doi: 10.1007/s00213‐004‐1969‐5.
  Harrison, A. L., Everitt, B. J., & Robbins, T. W. (1997). Central 5‐HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: Interactions with dopaminergic mechanisms. Psychopharmacology, 133, 329–342. doi: 10.1007/s002130050410.
  Hayward, A., Tomlinson, A., & Neill, J. C. (2016). Low attentive and high impulsive rats: A translational animal model of ADHD and disorders of attention and impulse control. Pharmacology & Therapeutics, 158, 41–51. doi: 10.1016/j.pharmthera.2015.11.010.
  Higgins, G. A., Breysse, N., Undzys, E., Derksen, D. R., Jeffrey, M., Scott, B. W., … Burnham, W. M. (2009). Comparative study of five antiepileptic drugs on a translational cognitive measure in the rat: Relationship to antiepileptic property. Psychopharmacology, 207, 513–527. doi: 10.1007/s00213‐009‐1682‐5.
  Higgins, G. A., Ballard, T. M., Huwyler, J., Kemp, J. A., & Gill, R. (2003a). Evaluation of the NR2B‐selective NMDA receptor antagonist Ro 63‐1908 on rodent behaviour: Evidence for an involvement of NR2B receptors in response inhibition. Neuropharmacology, 44, 324–341. doi: 10.1016/S0028‐3908(02)00402‐1.
  Higgins, G. A., Enderlin, M., Haman, M., & Fletcher, P. J. (2003b). The 5‐HT2A receptor antagonist M100,907 attenuates motor and ‘impulsive‐type’ behaviours produced by NMDA receptor antagonism. Psychopharmacology, 170, 309–319. doi: 10.1007/s00213‐003‐1549‐0.
  Higgins, G. A., Grzelak, M. E., Pond, A. J., Cohen‐Williams, M. E., Hodgson, R. A., & Varty, G. B. (2007). The effect of caffeine to increase reaction time in the rat during a test of attention is mediated through antagonism of adenosine A2A receptors. Behavioural Brain Research, 185, 32–42. doi: 10.1016/j.bbr.2007.07.013.
  Higgins, G. A., Silenieks, L. B., MacMillan, C., Sevo, J., Zeeb, F. D., & Thevarkunnel, S. (2016). Enhanced attention and impulsive action following NMDA receptor GluN2B‐selective antagonist pretreatment. Behavioural Brain Research, 311, 1–14. doi: 10.1016/j.bbr.2016.05.025.
  Hvoslef‐Eide, M., Mar, A. C., Nilsson, S. R., Alsiö, J., Heath, C. J., Saksida, L. M., … Bussey, T. J. (2015). The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia. Psychopharmacology, 232, 3853–3872. doi: 10.1007/s00213‐015‐4007‐x.
  Humby, T., Laird, F. M., Davies, W., & Wilkinson, L. S. (1999). Visuospatial attentional functioning in mice: Interactions between cholinergic manipulations and genotype. European Journal of Neuroscience, 11, 2813–2823. doi: 10.1046/j.1460‐9568.1999.00701.x.
  Isherwood, S. N., Pekcec, A., Nicholson, J. R., Robbins, T. W., & Dalley, J. W. (2015). Dissociable effects of mGluR5 allosteric modulation on distinct forms of impulsivity in rats: Interaction with NMDA receptor antagonism. Psychopharmacology, 232, 3327–3344. doi: 10.1007/s00213‐015‐3984‐0.
  Jones, D. N. C., & Higgins, G. A. (1995). Effect of scopolamine on visual attention in rats. Psychopharmacology, 120, 142–149. doi: 10.1007/BF02246186.
  Jones, D. N. C., Barnes, J. C., Kirkby, D. L., & Higgins, G. A. (1995). Age associated impairments in a test of attention: Evidence for involvement of cholinergic systems. The Journal of Neuroscience, 15, 7282–7292.
  Jupp, B., & Dalley, J. W. (2014). Convergent pharmacological mechanisms in impulsivity and addiction: Insights from rodent models. British Journal of Pharmacology, 171, 4729–4766. doi: 10.1111/bph.12787.
  Kirkby, D. L., Jones, D. N. C., Barnes, J. C., & Higgins, G. A. (1996). Effects of anticholinesterase drugs tacrine and E2020, the 5‐HT(3) antagonist ondansetron, and the H(3) antagonist thioperamide, in models of cognition and cholinergic function. Behavioural Pharmacology, 7, 513–525.
  Koskinen, T., Ruotsalainen, S., & Sirvio, J. (2000). The 5‐HT(2) receptor activation enhances impulsive responding without increasing motor activity in rats. Pharmacology, Biochemistry and Behavior, 66, 729–738. doi: 10.1016/S0091‐3057(00)00241‐0.
  Lambourne, S. L., Humby, T., Isles, A. R., Emson, P. C., Spillantini, M. G., & Wilkinson, L. S. (2007). Impairments in impulse control in mice transgenic for the human FTDP‐17 tauV337M mutation are exacerbated by age. Human Molecular Genetics, 16, 1708–1719. doi: 10.1093/hmg/ddm119.
  Lehmann, O., Grottick, A. J., Cassel, J. C., & Higgins, G. A. (2003). A double dissociation between serial reaction time and radial maze performance in rats subjected to 192 IgG‐saporin lesions of the nucleus basalis and/or the septal region. European Journal of Neuroscience, 18, 651–666. doi: 10.1046/j.1460‐9568.2003.02745.x.
  Le Pen, G., Grottick, A. J., Higgins, G. A., & Moreau, J‐L. (2003). Phencyclidine exacerbates attentional deficits in a neurodevelopmental rat model of schizophrenia. Neuropsychopharmacology, 28, 1799–1809. doi: 10.1038/sj.npp.1300208.
  Ligneau, X., Lin, J., Vanni‐Mercier, G., Jouvet, M., Muir, J. L., Ganellin, C. R., … Schwartz, J. (1998). Neurochemical and behavioral effects of ciproxifan, a potent histamine H3‐receptor antagonist. The Journal of Pharmacology and Experimental Therapeutics, 287, 658–666.
  Lindner, M. D., Hogan, J. B., Hodges, D. B. Jr, Orie, A. F., Chen, P., Corsa, J. A., … Gribkoff, V. K. (2006). Donepezil primarily attenuates scopolamine‐induced deficits in psychomotor function, with moderate effects on simple conditioning and attention, and small effects on working memory and spatial mapping. Psychopharmacology, 188, 629–640. doi: 10.1007/s00213‐006‐0556‐3.
  Lustig, C., Kozak, R., Sarter, M., Young, J. W., & Robbins, T. W. (2013). CNTRICS final animal model task selection: Control of attention. Neuroscience and Biobehavioral Reviews, 37, 2099–2110. doi: 10.1016/j.neubiorev.2012.05.009.
  McGaughy, J., Dalley, J. W., Morrison, C. H., Everitt, B. J., & Robbins, T. W. (2002). Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192IgG‐saporin on attentional performance in a five‐choice serial reaction time task. The Journal of Neuroscience, 22, 1905–1913.
  Mirza, N. R., & Stolerman, I. P. (1998). Nicotine enhances sustained attention in the rat under specific task conditions. Psychopharmacology, 138, 266–274. doi: 10.1007/s002130050671.
  Mirza, N. R., & Stolerman, I. P. (2000). The role of nicotinic and muscarinic acetylcholine receptors in attention. Psychopharmacology, 148, 243–250. doi: 10.1007/s002130050048.
  Mirza, N. R., & Bright, J. L. (2001). Nicotine‐induced enhancements in the five‐choice serial reaction time task in rats are strain‐dependent. Psychopharmacology, 154, 8–12. doi: 10.1007/s002130000605.
  Muir, J. L., Everitt, B. J., & Robbins, T. W. (1995). Reversal of visual attentional dysfunction following lesions of the cholinergic basal forebrain by physostigmine and nicotine but not by the 5‐HT3 receptor antagonist, ondansetron. Psychopharmacology, 118, 82–92. doi: 10.1007/BF02245253.
  Muir, J. L., Fischer, W., & Björklund, A. (1999). Decline in visual attention and spatial memory in aged rats. Neurobiology of Aging, 20, 605–615. doi: 10.1016/S0197‐4580(99)00098‐6.
  Navarra, R., Graf, R., Huang, Y., Logue, S., Comery, T., Hughes, Z., & Day, M. (2008). Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5‐choice serial reaction time test. Progress In Neuro‐Psychopharmacology & Biological Psychiatry, 32, 34–41. doi: 10.1016/j.pnpbp.2007.06.017.
  Ohmura, Y., Sasamori, H., Tsutsui‐Kimura, I., Izumi, T., Yoshida, T., & Yoshioka, M. (2017). Varenicline provokes impulsive action by stimulating α4β2 nicotinic acetylcholine receptors in the infralimbic cortex in a nicotine exposure status‐dependent manner. Pharmacology, Biochemistry and Behavior, 154, 1–10. doi: 10.1016/j.pbb.2017.01.002.
  Paine, T. A., Tomasiewicz, H. C., Zhang, K., & Carlezon, W. A. Jr. (2007). Sensitivity of the five‐choice serial reaction time task to the effects of various psychotropic drugs in Sprague‐Dawley rats. Biological Psychiatry, 62, 687–693. doi: 10.1016/j.biopsych.2006.11.017.
  Patel, S., Stolerman, I. P., Asherson, P., & Sluyter, F. (2006). Attentional performance of C57BL/6 and DBA/2 mice in the 5‐choice serial reaction time task. Behavioural Brain Research, 170, 197–203. doi: 10.1016/j.bbr.2006.02.019.
  Paterson, N. E., Ricciardi, J., Wetzler, C., & Hanania, T. (2011). Sub‐optimal performance in the 5‐choice serial reaction time task in rats was sensitive to methylphenidate, atomoxetine and d‐amphetamine, but unaffected by the COMT inhibitor tolcapone. Neuroscience Research, 69, 41–50. doi: 10.1016/j.neures.2010.10.001.
  Pattij, T., Schetters, D., Schoffelmeer, A. N., & van Gaalen, M. M. (2012). On the improvement of inhibitory response control and visuospatial attention by indirect and direct adrenoceptor agonists. Psychopharmacology, 219, 327–340. doi: 10.1007/s00213‐011‐2405‐2.
  Prusky, G. T., Harker, K. T., Douglas, R. M., & Whishaw, I. Q. (2002). Variation in visual acuity within pigmented, and between pigmented and albino rat strains. Behavioural Brain Research, 136, 339–348. doi: 10.1016/S0166‐4328(02)00126‐2.
  Puumala, T., Riekkinen, P. Sr, & Sirviö, J. (1997). Modulation of vigilance and behavioral activation by alpha‐1 adrenoceptors in the rat. Pharmacology, Biochemistry and Behavior, 56, 705–712. doi: 10.1016/S0091‐3057(96)00408‐X.
  Puumala, T., Ruotsalainen, S., Jäkälä, P., Koivisto, E., Riekkinen, P. Jr, & Sirviö, J. (1996). Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder. Neurobiology of Learning and Memory, 66, 198–211. doi: 10.1006/nlme.1996.0060.
  Quarta, D., Naylor, C. G., Morris, H. V., Patel, S., Genn, R. F., & Stolerman, I. P. (2007a). Different effects of ionotropic and metabotropic glutamate receptor antagonists on attention and the attentional properties of nicotine. Neuropharmacology, 53, 421–430. doi: 10.1016/j.neuropharm.2007.05.023.
  Quarta, D., Naylor, C., & Stolerman, I. P. (2007b). The serotonin2C receptor agonist Ro‐60‐0175 attenuates effects of nicotine in the five‐choice serial reaction time task and in drug discrimination. Psychopharmacology, 193, 391–402. doi: 10.1007/s00213‐007‐0802‐3.
  Riccio, C. A., Reynolds, C. R., & Lowe, P. (2001). Clinical applications of continuous performance tests: Measuring attention and impulsive responding in children and adults. New York: John Wiley & Sons, Inc.
  Robbins, T. W. (2002). The 5‐choice serial reaction time task: Behavioural pharmacology and functional neurochemistry. Psychopharmacology, 163, 362–380. doi: 10.1007/s00213‐002‐1154‐7.
  Robinson, E. S. J., Eagle, D. M., Mar, A. C., Bari, A., Banerjee, G., Jiang, X., … Robbins, T. W. (2008). Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology, 33, 1028–1037. doi: 10.1038/sj.npp.1301487.
  Ruotsalainen, S., Haapalinna, A., Riekkinen, P. J. Sr., & Sirvio, J. (1997). Dexmedetomidine reduces response tendency, but not accuracy of rats in attention and short‐term memory tasks. Pharmacology, Biochemistry and Behavior, 56, 31–40. doi: 10.1016/S0091‐3057(96)00151‐7.
  Ruotsalainen, S., Miettinen, R., MacDonald, E., Koivisto, E., & Sirvio, J. (2000). Blockade of muscarinic, rather than nicotinic, receptors impairs attention, but does not interact with serotonin depletion. Psychopharmacology, 148, 111–123. doi: 10.1007/s002130050032.
  Sahakian, B. J., Owen, A. M., Morant, N. J., Eagger, S. A., Boddington, S., Crayton, L., … Levy, R. (1993). Further analysis of the cognitive effects of tetrahydroaminoacridine (THA) in Alzheimer's disease: Assessment of attentional and mnemonic function using CANTAB. Psychopharmacology, 110, 395–401. doi: 10.1007/BF02244644.
  Sanchez‐Roige, S., Peña‐Oliver, Y., & Stephens, D. N. (2012). Measuring impulsivity in mice: The five‐choice serial reaction time task. Psychopharmacology, 219, 253–270. doi: 10.1007/s00213‐011‐2560‐5.
  Semenova, S., & Markou, A. (2007). The effects of the mGluR5 antagonist MPEP and the mGluR2/3 antagonist LY341495 on rats' performance in the 5‐choice serial reaction time task. Neuropharmacology, 52, 863–872. doi: 10.1016/j.neuropharm.2006.10.003.
  Shannon, H. E., & Eberle, E. L. (2006). Effects of biasing the location of stimulus presentation, and the muscarinic cholinergic receptor antagonist scopolamine, on performance of a 5‐choice serial reaction time attention task in rats. Behavioural Pharmacology, 17, 71–85. doi: 10.1097/01.fbp.0000189813.54178.e3.
  Shannon, H. E., & Love, P. L. (2005). Effects of antiepileptic drugs on attention as assessed by a five‐choice serial reaction time task in rats. Epilepsy & Behavior, 7, 620–628. doi: 10.1016/j.yebeh.2005.08.017.
  Shoaib, M., & Bizarro, L. (2005). Deficits in a sustained attention task following nicotine withdrawal in rats. Psychopharmacology, 178, 211–222. doi: 10.1007/s00213‐004‐2004‐6.
  Sirvio, J., Jakala, P., Mazurkiewicz, M., Haapalinna, A., Riekkinen, P. Jr., & Riekkinen, P. J. (1993). Dose‐ and parameter‐dependent effects of atipamezole, an α;2‐antagonist, on the performance of rats in a five‐choice serial reaction time task. Pharmacology, Biochemistry and Behavior, 45, 123–129. doi: 10.1016/0091‐3057(93)90095‐B.
  Smith, J. W., Gastambide, F., Gilmour, G., Dix, S., Foss, J., Lloyd, K., … Tricklebank, M. (2011). A comparison of the effects of ketamine and phencyclidine with other antagonists of the NMDA receptor in rodent assays of attention and working memory. Psychopharmacology, 217, 255–269. doi: 10.1007/s00213‐011‐2277‐5.
  Spinelli, S., Pennanen, L., Dettling, A. C., Feldon, J., Higgins, G. A., & Pryce, C. R. (2004). Performance of the marmoset monkey on computerized tasks of attention and working memory. Cognitive Brain Research, 19, 123–137. doi: 10.1016/j.cogbrainres.2003.11.007.
  Tomlinson, A., Grayson, B., Marsh, S., Harte, M. K., Barnes, S. A., Marshall, K. M., & Neill, J. C. (2014). Pay attention to impulsivity: Modelling low attentive and high impulsive subtypes of adult ADHD in the 5‐choice continuous performance task (5C‐CPT) in female rats. European Neuropsychopharmacology, 24, 1371–1380. doi: 10.1016/j.euroneuro.2014.04.008.
  van Gaalen, M. M., Brueggeman, R. J., Bronius, P. F., Schoffelmeer, A. N., & Vanderschuren, L. J. (2006). Behavioral disinhibition requires dopamine receptor activation. Psychopharmacology, 187, 73–85. doi: 10.1007/s00213‐006‐0396‐1.
  Voon, V. (2014). Models of impulsivity with a focus on waiting impulsivity: Translational potential for neuropsychiatric disorders. Current Addiction Reports, 1, 281–288. doi: 10.1007/s40429‐014‐0036‐5.
  Waters, K. A., Burnham, K. E., O'Connor, D., Dawson, G. R., & Dias, R. (2005). Assessment of modafinil on attentional processes in a five‐choice serial reaction time test in the rat. Journal of Psychopharmacology, 19, 149–158. doi: 10.1177/0269881105048995.
  Weed, M. R., Taffe, M. A., Polis, I., Roberts, A. C., Robbins, T. W., Koob, G. F., … Gold, L. H. (1999). Performance norms for a rhesus monkey neuropsychological testing battery: Acquisition and long‐term performance. Cognitive Brain Research, 8, 185–201. doi: 10.1016/S0926‐6410(99)00020‐8.
  Winstanley, C. A. (2011). The utility of rat models of impulsivity in developing pharmacotherapies for impulse control disorders. British Journal of Pharmacology, 164, 1301–1321. doi: 10.1111/j.1476‐5381.2011.01323.x.
  Winstanley, C. A., Theobald, D. E., Dalley, J. W., Glennon, J. C., & Robbins, T. W. (2004). 5‐HT2A and 5‐HT2C receptor antagonists have opposing effects on a measure of impulsivity: Interactions with global 5‐HT depletion. Psychopharmacology, 176, 376–385. doi: 10.1007/s00213‐004‐1884‐9.
  Worbe, Y., Savulich, G., Voon, V., Fernandez‐Egea, E., & Robbins, T. W. (2014). Serotonin depletion induces ‘waiting impulsivity’ on the human four‐choice serial reaction time task: Cross‐species translational significance. Neuropsychopharmacology, 39, 1519–1526. doi: 10.1038/npp.2013.351.
  Wouda, J. A., Riga, D., De Vries, W., Stegeman, M., van Mourik, Y., Schetters, D., … De Vries, T. J. (2011). Varenicline attenuates cue‐induced relapse to alcohol, but not nicotine seeking, while reducing inhibitory response control. Psychopharmacology, 216, 267–277. doi: 10.1007/s00213‐011‐2213‐8.
  Xi, W., Su, D., Nie, B., Yu, Y., Shan, B., Chen, Q., … Zhang, H. (2013). 18F‐FDG PET study reveals brain functional changes during attention in rats. Journal of Nuclear Medicine, 54, 1969–1973. doi: 10.2967/jnumed.113.123000.
  Young, J. W., Light, G. A., Marston, H. M., Sharp, R., & Geyer, M. A. (2009). The 5‐choice continuous performance test: Evidence for a translational test of vigilance for mice. PLoS One, 4(1), e4227. doi: 10.1371/journal.pone.0004227.
  Young, J. W., Meves, J. M., & Geyer, M. A. (2013). Nicotinic agonist‐induced improvement of vigilance in mice in the 5‐choice continuous performance test. Behavioural Brain Research, 240, 119–133. doi: 10.1016/j.bbr.2012.11.028.
PDF or HTML at Wiley Online Library