Novel Object Recognition in the Rat: A Facile Assay for Cognitive Function

Joanne R. Mathiasen1, Amy DiCamillo1

1 Discovery Research, Cephalon, West Chester, Pennsylvania
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 5.59
DOI:  10.1002/0471141755.ph0559s49
Online Posting Date:  June, 2010
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The rat novel object recognition (NOR) assay is a relatively high‐throughput, robust, and sensitive procedure for evaluating compounds for cognition‐enhancing activity. For the test, rats are given the opportunity to explore two identical objects for a predetermined period of time. After a delay, the animals are then presented with two objects to explore, one of which is the same as in the first exploration trial, the other a new object. Depending on the length of the delay between the two trials, the rats will either explore the novel object for a greater time period, indicating memory for the familiar object, or will explore the novel and familiar objects for the same amount of time, indicating a lack of recall or loss of memory for the familiar object presented during the initial trial. The protocol described in this unit can be used to evaluate the effects of a compound on the short‐term/working memory of adult male rats following a 24‐hr inter‐trial interval. Curr. Protoc. Pharmacol. 49:5.59.1‐5.59.15. © 2010 by John Wiley & Sons, Inc.

Keywords: memory; cognition; novel object

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Evaluation of Pharmacological Effects on Novel Object Recognition (NOR) in Adult Male Rats
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Evaluation of Pharmacological Effects on Novel Object Recognition (NOR) in Adult Male Rats

  Materials
  • Adult Wistar rats (200 to 250 g, ∼2 months old; Charles River Laboratories)
  • Rodent diet (e.g., LabDiet 5001, PMI Nutrition International)
  • Test compounds (see recipe)
  • Rat housing cages (36.8‐cm length × 30.5‐cm width × 19.1‐cm height)
  • Bedding material (Alpha Dri, Shepherd Specialty Papers)
  • Task lights (Electrix S202 halogen lamp, 50 W)
  • Large open test box constructed of opaque plastic or acrylic material (50‐cm length × 50‐cm width × 35‐cm height; ViewPoint Life Sciences; see Fig. )
  • Light meter (Traceable standard lux meter; Fisher Scientific, cat. no. 06‐662‐64)
  • Low‐odor permanent marker (e.g., Sharpie blue or black marker)
  • Animal balance accurate to 1 g (Ohaus CS 2000)
  • Familiar and Novel Objects (see Fig. and Critical Parameters)
  • Reusable adhesive (such as Handi‐Tak, Super Glue Corporation)
  • Stopwatches/timers with 1‐sec precision (Traceable; VWR, cat. no. 62344‐585)
  • 18‐G Luer gastric needles (if performing oral administration of dosing solution; Animal Feeding/Intubation Needles, Popper & Sons)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Abe, H., Ishida, Y., and Iwasaki, T. 2004. Perirhinal N‐methyl‐D‐aspartate and muscarinic systems participate in object recognition in rats. Neurosci. Lett. 356:191‐194.
   Aggleton, J.P. 1985. One‐trial object recognition by rats. Q. J. Exp. Psychol. 37:279‐294.
   Baker, K.B. and Kim, J.J. 2002. Effects of stress and hippocampal NMDA receptor antagonism on recognition memory in rats. Learn. Memory 9:58‐65.
   Birzniece, V., Backstrom, T., Johansson, I.M., Lindglad, C., Lundgren, P., Lofgren, M., Osson, T., Ragagnin, G., Taube, M., Turkmen, S., Wahlstrom, G., Wang, M., Wihlback, A.C., and Zhu, D. 2006. Neuroactive steroid effects on cognitive functions with a focus on the serotonin and GABA systems. Brain Res. Rev. 51:212‐239.
   Brecht, M., Preilowski, B., and Merzenich, M.M. 1997. Functional architecture of the mystacial vibrissae. Behav. Brain Res. 84:81‐97.
   Buccafusco, J.J., Webster, S.J., Terry, A.V. Jr., Kille, N., and Blessing, D. 2009. Protracted cognitive effects produced by clonidine in Macaca nemestrina performing a delayed matching task. Psychopharmacology 202:477‐485.
   Cacabelos, R., Takeda, M., and Winblad, B. 1999. The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimer's disease. Int. J. Geriatr. Psych. 14:3‐47.
   Cahill, L. 2006. Why sex matters for neuroscience. Nat. Rev. Neurosci. 7:477‐484.
   De Lima, M.N., Laranja, D.C., Caldana, F., Bromber, E., Roesler, R., and Schroder, N. 2005. Pre‐ or post‐training administration of the NMDA receptor blocker MK‐801 impairs object recognition memory in rats. Behav. Brain Res. 156:139‐143.
   Dyck, R.H. 2005. Vibrissae. In The Behavior of the Laboratory Rat, A Handbook with Tests (I.Q. Whishaw and B. Kolb, eds.) pp. 81‐89. Oxford University Press, New York.
   Ennaceur, A. 2005. Detailed analysis of the behavior of Lister and Wistar rats in anxiety, object recognition and object location tasks. Behav. Brain Res. 159:247‐266.
   Ennaceur, A. and Delacour, J. 1988. A new one‐trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 31:47‐59.
   Ennaceur, A., Neave, N., and Aggleton, J.P. 1997. Spontaneous object recognition and object location memory in rats: The effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp. Brain Res. 113:509‐519.
   Esbenshade, T.A., Brownman, K.E., Bitner, R.S., Strakhova, M., Cowart, M.D., and Brioni, J.D. 2008. The histamine H3 receptor: An attractive target for the treatment of cognitive disorders. Brit. J. Pharmacol. 154:1166‐1181.
   Ghi, P., Orsetti, M., Ricci Gamalero, S., and Ferretti, C. 1999. Sex differences in memory performance in the object recognition test. Possible role of histamine receptors. Pharmacol. Biochem. Behav. 64:761‐766.
   Grubbs, F.E. 1969. Procedures for detecting outlying observations in samples. Technometrics 11:1‐21.
   Hirst, W.D., Stean, T.O., Rogers, D.C., Sunter, D., Pugh, P., Moss, S.F., Bromidge, S.M., Riley, G., Smith, D.R., Bartlett, S., Heidbreder, C.A., Atkins, A.R., Lacroix, L.P., Dawson, L.A., Foley, A.G., Regan, C.M., and Upton, N. 2006. SB‐399885 is a potent, selective 5‐HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur. J. Pharmacol. 553:109‐119.
   Jones, E.G. and Diamond, I.T. (eds.) 1995. The Barrel Cortex of Rodents. Plenum Press, New York.
   Kesner, R.P., Bolland, R.L., and Dakis, M. 1993. Memory for spatial location, motor responses, and objects: Triple dissociation among the hippocampus, caudate nucleus, and extrastriate visual cortex. Exp. Brain Res. 93:462‐470.
   Luine, V.N., Mohan, G., Tu, Z., and Efange, S.M. 2002. Chromaproline and chromaperidine, nicotine agonists, and Donepezil, cholinesterase inhibitor, enhance performance of memory tasks in ovariectomized rats. Pharmacol. Biochem. Behav. 74:213‐220.
   Medhurst, A.D., Atkins, A.R., Beresford, I.J., Brackenborough, K., Briggs, M.A., Calver, A.R., Cilia, J., Culderay, J.E., Crook, B., Davis, J.B., Davis, R.K., Davis, R.P., Dawson, L.A., Foley, A.G., Garlton, J., Gonzalez, M.I., Heslop, T., Hirst, W.D., Jennings, C., Jones, D.N., Lacroix, L.P., Martyn, A., Ociepka, S., Ray, A., Regan, C.M., Roberts, J.C., Schogger, J., Southam, E., Stean, T.O., Trail, B.K., Upton, N., Wadsworth, G., Wald, J.A., White, T., Witherington, J., Woolley, M.L., Worby, A., and Wilson, D.M. 2007. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer's disease brain and improves cognitive performance in preclinical models. J. Pharmacol. Exp. Ther. 321:1032‐1045.
   Nagai, T., Murai, R., Matsui, K., Kamei, H., Noda, Y., Furukawa, H., and Nabeshima, T. 2009. Aripiprazole ameliorates phencyclidine‐induced impairment of recognition memory through dopamine D1 and serotonin 5‐HT1A receptors. Psychopharmacology 202:315‐328.
   Parker, A. and Gaffan, D. 1998. Interaction of frontal and perirhinal cortices in visual object recognition memory in monkeys. Eur. J. Neurosci. 10:3044‐3057.
   Pascoli, V., Boer‐Saccomani, C., and Hermant, J‐F. 2009. H3 receptor antagonists reverse delay‐dependent deficits in novel object discrimination by enhancing retrieval. Psychopharmacology 202:141‐152.
   Pichat, P., Bergis, O.E., Terranova, J.P., Urani, A., Durate, C., Santucci, V., Gueudet, C., Votz, C., Steinberg, R., Stemmelin, J., Oury‐Donat, F., Avenet, P., Griebel, G., and Scatton, B. 2007. SSR180711, a novel selective alpha7 nicotinic receptor partial agonist, (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology 32:17‐34.
   Prickaerts, J., Van Stavern, W.C.G., Sik, A., Markerink‐Van Ittersum, M., Niewöhner, U., Van der Staay, F.J., Blokland, A., and De Vente, J. 2002. Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat. Neuroscience 113:349‐359.
   Prickaerts, J., Sik, A., van der Staay, F.J., de Vente, J., and Blokland, A. 2005. Dissociable effects of acetylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: Acquisition versus consolidation. Psychopharmacology 177:381‐390.
   Ramus, S.J. and Eichenbaum, H. 2000. Neural correlates of olfactory recognition memory in the rat orbitofrontal cortex. J. Neurosci. 20:8199‐8208.
   Rutten, K., Prickaerts, J., and Blokland, A. 2006. Rolipram reverses scopolamine‐induced and time‐dependent memory deficits in object recognition by different mechanisms of action. Neurobiol. Learn. Memory 85:132‐138.
   Sambeth, A., Riedel, W.J., Smits, L.T., and Blokland, A. 2007. Cholinergic drugs affect novel object recognition in rats: Relation with hippocampal EEG. Eur. J. Pharmacol. 572:151‐159.
   Scali, C., Grazia Giovannini, M., Prosperi, C., Bartolini, L., and Pepeu, G. 1997. Tacrine administration enhances extracellular acetylcholine in vivo and restores the cognitive impairment in aged rats. Pharmacol. Res. 36:463‐465.
   Squire, L.R. and Zola‐Morgan, S. 1988. Memory: Brain systems and behavior. Trends Neurosci. 11:170‐175.
   Squire, L.R. and Zola, S.M. 1996. Structure and function of declarative and nondeclarative memory systems. Proc. Natl. Acad. Sci. U.S.A. 93:13515‐13522.
   Sutcliffe, J.S., Marshall, K.M., and Neill, J.C. 2007. Influence of gender on working and spatial memory in the novel object recognition task in the rat. Behav. Brain Res. 177:117‐125.
   Terry, A.V. Jr., Buccafusco, J.J., and Wilson, C. 2008. Cognitive dysfunction in neuropsychiatric disorders: Selected serotonin receptor subtypes as therapeutic targets. Behav. Brain Res. 195:30‐38.
   Wenk, G.L. 2004. Assessment of spatial memory using the radial arm maze and morris water maze. Curr. Protoc. Neurosci. 8.5A.1‐8.5A.12.
   Winters, B.D. and Bussey, T.J. 2005a. Transient inactivation of peirhinal cortex disrupts encoding, retrieval, and consolidation of object recognition memory. J. Neurosci. 25:52‐61.
   Winters, B.D. and Bussey, T.J. 2005b. Glutamate receptors in perirhinal cortex mediate encoding, retrieval, and consolidation of object recognition memory. J. Neurosci. 25:4243‐4251.
   Winters, B.D., Matheson, W.R., McGregor, I.S., and Brown, R.E. 2000. An automated two‐choice test of olfactory working memory in the rat: Effect of scopolamine. Psychobiology 28:21‐31.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library