Overview of Animal Models of Obesity

Thomas A. Lutz1, Stephen C. Woods2

1 University of Zurich, Institute of Veterinary Physiology, Zurich Center of Integrative Human Physiology, Zurich, Switzerland, 2 Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati Obesity Research Center, Cincinnati, Ohio
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 5.61
DOI:  10.1002/0471141755.ph0561s58
Online Posting Date:  September, 2012
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The focus of this overview is on the animal models of obesity most commonly utilized in research. The models include monogenic models in the leptin pathway, polygenic diet‐dependent models, and, in particular for their historical perspective, surgical and chemical models of obesity. However, there are far too many models to consider all of them comprehensively, especially those caused by selective molecular genetic approaches modifying one or more genes in specific populations of cells. Further, the generation and use of inducible transgenic animals (induced knock‐out or knock‐in) is not covered, even though they often carry significant advantages compared to traditional transgenic animals, e.g., influences of the genetic modification during the development of the animals can be minimized. The number of these animal models is simply too large to be covered in this unit. Curr. Protoc. Pharmacol. 58:5.61.1‐5.61.18. © 2012 by John Wiley & Sons, Inc.

Keywords: monogenic models; polygenic models; genetic engineering; surgical model; leptin; diabetes; hyperglycemia

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Animal Models of Obesity
  • Monogenic Models: Monogenic Mutations in the Leptin Pathway
  • Other Monogenic Models
  • Diet‐Induced Models; Polygenic Models
  • Other Genetically Engineered Mutants
  • Surgical or Chemical Models of Obesity
  • Seasonal Models of Obesity
  • Other Models of Obesity and Associated Metabolic Changes
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Asarian, L. and Geary, N. 2002. Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats. Horm. Behav. 42:461‐471.
   Asarian, L. and Geary, N. 2006. Modulation of appetite by gonadal steroid hormones. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361:1251‐1263.
   Asarian, L. and Geary, N. 2007. Estradiol enhances cholecystokinin‐dependent lipid‐induced satiation and activates estrogen receptor‐alpha‐expressing cells in the nucleus tractus solitarius of ovariectomized rats. Endocrinology 148:5656‐5666.
   Banks, W.A., Coon, A.B., Robinson, S.M., Moinuddin, A., Shultz, J.M., Nakaoke, R., and Morley, J.E. 2004. Triglycerides induce leptin resistance at the blood‐brain barrier. Diabetes 53:1253‐1260.
   Bartness, T.J. and Wade, G.N. 1985. Photoperiodic control of seasonal body weight cycles in hamsters. Neurosci. Biobehav. Rev. 9:599‐612.
   Bates, S.H., Stearns, W.H., Dundon, T.A., Schubert, M., Tso, A.W., Wang, Y., Banks, A.S., Lavery, H.J., Haq, A.K., Maratos‐Flier, E., Neel, B.G., Schwartz, M.W., and Myers, M.G. Jr. 2003. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421:856‐859.
   Bates, S.H., Kulkarni, R.N., Seifert, M., and Myers, M.G. Jr. 2005. Roles for leptin receptor/STAT3‐dependent and ‐independent signals in the regulation of glucose homeostasis. Cell Metab. 1:169‐178.
   Becskei, C., Lutz, T.A., and Riediger, T. 2009. Blunted fasting‐induced hypothalamic activation and refeeding hyperphagia in late‐onset obesity. Neuroendocrinology 90:371‐382.
   Becskei, C., Lutz, T.A., and Riediger, T. 2010. Reduced fasting‐induced activation of hypothalamic arcuate neurons is associated with hyperleptinemia and increased leptin sensitivity in obese mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299:R632‐641.
   Benoit, S.C., Kemp, C.J., Elias, C.F., Abplanalp, W., Herman, J.P., Migrenne, S., Lefevre, A.L., Cruciani‐Guglielmacci, C., Magnan, C., Yu, F., Niswender, K., Irani, B.G., Holland, W.L., and Clegg, D.J. 2009. Palmitic acid mediates hypothalamic insulin resistance by altering PKC‐theta subcellular localization in rodents. J. Clin. Invest. 119:2577‐2589.
   Bergen, H.T., Mizuno, T.M., Taylor, J., and Mobbs, C.V. 1998. Hyperphagia and weight gain after gold‐thioglucose: Relation to hypothalamic neuropeptide Y and proopiomelanocortin. Endocrinology 139:4483‐4488.
   Bray, G.A. 1977. The Zucker‐fatty rat: A review. Fed. Proc. 36:148‐153.
   Bray, G.A. and York, D.A. 1979. Hypothalamic and genetic obesity in experimental animals: An autonomic and endocrine hypothesis. Physiol. Rev. 59:719‐809.
   Bruning, J.C., Gautam, D., Burks, D.J., Gillette, J., Schubert, M., Orban, P.C., Klein, R., Krone, W., Muller‐Wieland, D., and Kahn, C.R. 2000. Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122‐2125.
   Bures, E.J., Courchesne, P.L., Douglass, J., Chen, K., Davis, M.T., Jones, M.D., McGinley, M.D., Robinson, J.H., Spahr, C.S., Sun, J., Wahl, R.C., and Patterson, S.D. 2001. Identification of incompletely processed potential carboxypeptidase E substrates from CpEfat/CpEfat mice. Proteomics 1:79‐92.
   Butler, A.A., Kesterson, R.A., Khong, K., Cullen, M.J., Pelleymounter, M.A., Dekoning, J., Baetscher, M., and Cone, R.D. 2000. A unique metabolic syndrome causes obesity in the melanocortin‐3 receptor‐deficient mouse. Endocrinology 141:3518‐3521.
   Campfield, L.A., Smith, F.J., Guisez, Y., Devos, R., and Burn, P. 1995. Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science 269:546‐549.
   Challis, B.G., Coll, A.P., Yeo, G.S., Pinnock, S.B., Dickson, S.L., Thresher, R.R., Dixon, J., Zahn, D., Rochford, J.J., White, A., Oliver, R.L., Millington, G., Aparicio, S.A., Colledge, W.H., Russ, A.P., Carlton, M.B., and O'Rahilly, S. 2004. Mice lacking pro‐opiomelanocortin are sensitive to high‐fat feeding but respond normally to the acute anorectic effects of peptide‐YY(3‐36). Proc. Natl. Acad. Sci. U.S.A. 101:4695‐4700.
   Chen, A.S., Marsh, D.J., Trumbauer, M.E., Frazier, E.G., Guan, X.M., Yu, H., Rosenblum, C.I., Vongs, A., Feng, Y., Cao, L., Metzger, J.M., Strack, A.M., Camacho, R.E., Mellin, T.N., Nunes, C.N., Min, W., Fisher, J., Gopal‐Truter, S., MacIntyre, D.E., Chen, H.Y., and Van der Ploeg, L.H. 2000. Inactivation of the mouse melanocortin‐3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 26:97‐102.
   Chua, S.C. Jr., Chung, W.K., Wu‐Peng, X.S., Zhang, Y., Liu, S.M., Tartaglia, L., and Leibel, R.L. 1996. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271:994‐996.
   Clegg, D.J., Gotoh, K., Kemp, C., Wortman, M.D., Benoit, S.C., Brown, L.M., D'Alessio, D., Tso, P., Seeley, R.J., and Woods, S.C. 2011. Consumption of a high‐fat diet induces central insulin resistance independent of adiposity. Physiol. Behav. 103:10‐16.
   Coleman, D.L. 1978. Obese and diabetes: Two mutant genes causing diabetes‐obesity syndromes in mice. Diabetologia 14:141‐148.
   Coleman, D.L. and Eicher, E.M. 1990. Fat (fat) and tubby (tub): Two autosomal recessive mutations causing obesity syndromes in the mouse. J. Hered. 81:424‐427.
   Corander, M.P., Rimmington, D., Challis, B.G., O'Rahilly, S., and Coll, A.P. 2011. Loss of agouti‐related peptide does not significantly impact the phenotype of murine POMC deficiency. Endocrinology 152:1819‐1828.
   Cox, J.E. and Powley, T.L. 1981. Prior vagotomy blocks VMH obesity in pair‐fed rats. Am. J. Physiol. 240:E573‐E583.
   Crouse, J.A., Elliott, G.E., Burgess, T.L., Chiu, L., Bennett, L., Moore, J., Nicolson, M., and Pacifici, R.E. 1998. Altered cell surface expression and signaling of leptin receptors containing the fatty mutation. J. Biol. Chem. 273:18365‐18373.
   da Silva, B.A., Bjorbaek, C., Uotani, S., and Flier, J.S. 1998. Functional properties of leptin receptor isoforms containing the gln‐>pro extracellular domain mutation of the fatty rat. Endocrinology 139:3681‐3690.
   Davies, J.S., Gevers, E.F., Stevenson, A.E., Coschigano, K.T., El‐Kasti, M.M., Bull, M.J., Elford, C., Evans, B.A., Kopchick, J.J., and Wells, T. 2007. Adiposity profile in the dwarf rat: An unusually lean model of profound growth hormone deficiency. Am. J. Physiol. Endocrinol. Metab. 292:E1483‐E1494.
   Faust, I.M., Johnson, P.R., and Hirsch, J. 1980. Long‐term effects of early nutritional experience on the development of obesity in the rat. J. Nutr. 110:2027‐2034.
   Figlewicz, D.P., Ikeda, H., Hunt, T.R., Stein, L.J., Dorsa, D.M., Woods, S.C., and Porte, D. Jr. 1986. Brain insulin binding is decreased in Wistar Kyoto rats carrying the ‘fa’ gene. Peptides 7:61‐65.
   Florant, G.L. and Healy, J.E. 2011. The regulation of food intake in mammalian hibernators: A review. J. Comp. Physiol. B. 182:451‐467.
   Friedman, J.M. 1997. Leptin, leptin receptors and the control of body weight. Eur. J. Med. Res. 2:7‐13.
   Friedman, J.M. 1998. Leptin, leptin receptors, and the control of body weight. Nutr. Rev. 56:s38‐46; discussion s54‐75.
   Gloy, V., Langhans, W., Hillebrand, J.J., Geary, N., and Asarian, L. 2011. Ovariectomy and overeating palatable, energy‐dense food increase subcutaneous adipose tissue more than intra‐abdominal adipose tissue in rats. iol. Sex Differ. 2:6.
   Graham, M., Shutter, J.R., Sarmiento, U., Sarosi, I., and Stark, K.L. 1997. Overexpression of Agrt leads to obesity in transgenic mice. Nat. Genet. 17:273‐274.
   Guan, X.M., Yu, H., and Van der Ploeg, L.H. 1998. Evidence of altered hypothalamic pro‐opiomelanocortin/ neuropeptide Y mRNA expression in tubby mice. Brain Res. Mol. Brain Res. 59:273‐279.
   Halaas, J.L., Gajiwala, K.S., Maffei, M., Cohen, S.L., Chait, B.T., Rabinowitz, D., Lallone, R.L., Burley, S.K., and Friedman, J.M. 1995. Weight‐reducing effects of the plasma protein encoded by the obese gene. Science 269:543‐546.
   Hamann, A., Flier, J.S., and Lowell, B.B. 1996. Decreased brown fat markedly enhances susceptibility to diet‐induced obesity, diabetes, and hyperlipidemia. Endocrinology 137:21‐29.
   Hansen, B.C., Ortmeyer, H.K., and Bodkin, N.L. 1995. Prevention of obesity in middle‐aged monkeys: Food intake during body weight clamp. Obes. Res. 3:S199‐S204.
   Hariri, N. and Thibault, L. 2010. High‐fat diet‐induced obesity in animal models. Nutr. Res. Rev. 23:270‐299.
   Heisler, L.K. and Tecott, L.H. 1999. Knockout corner: Neurobehavioural consequences of a serotonin 5‐HT(2C) receptor gene mutation. Int. J. Neuropsychopharmacol. 2:67‐69.
   Huang‐Doran, I., Sleigh, A., Rochford, J.J., O'Rahilly, S., and Savage, D.B. 2010. Lipodystrophy: Metabolic insights from a rare disorder. J. Endocrinol. 207:245‐255.
   Huszar, D., Lynch, C.A., Fairchild‐Huntress, V., Dunmore, J.H., Fang, Q., Berkemeier, L.R., Gu, W., Kesterson, R.A., Boston, B.A., Cone, R.D., Smith, F.J., Campfield, L.A., Burn, P., and Lee, F. 1997. Targeted disruption of the melanocortin‐4 receptor results in obesity in mice. Cell 88:131‐141.
   Ikeda, H., Shino, A., Matsuo, T., Iwatsuka, H., and Suzuoki, Z. 1981. A new genetically obese‐hyperglycemic rat (Wistar fatty). Diabetes 30:1045‐1050.
   Joost, H.G. 2010. The genetic basis of obesity and type 2 diabetes: Lessons from the new zealand obese mouse, a polygenic model of the metabolic syndrome. Results Probl. Cell Differ. 52:1‐11.
   Kaiyala, K.J. and Schwartz, M.W. 2011. Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 60:17‐23.
   Kawano, K., Hirashima, T., Mori, S., Saitoh, Y., Kurosumi, M., and Natori, T. 1992. Spontaneous long‐term hyperglycemic rat with diabetic complications. Otsuka Long‐Evans Tokushima Fatty (OLETF) strain. Diabetes 41:1422‐1428.
   King, B.M. 1991. Ventromedial hypothalamic obesity: A reexamination of the irritative hypothesis. Neurosci. Biobehav. Rev. 15:341‐347.
   King, B.M. 2006. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol. Behav. 87:221‐244.
   Klaus, S., Munzberg, H., Truloff, C., and Heldmaier, G. 1998. Physiology of transgenic mice with brown fat ablation: Obesity is due to lowered body temperature. Am. J. Physiol. 274:R287‐R293.
   Klebig, M.L., Wilkinson, J.E., Geisler, J.G., and Woychik, R.P. 1995. Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur. Proc. Natl. Acad. Sci. U.S.A. 92:4728‐4732.
   Kushi, A., Sasai, H., Koizumi, H., Takeda, N., Yokoyama, M., and Nakamura, M. 1998. Obesity and mild hyperinsulinemia found in neuropeptide Y‐Y1 receptor‐deficient mice. Proc. Natl. Acad. Sci. U.S.A. 95:15659‐15664.
   Leibel, R.L. 2008. Molecular physiology of weight regulation in mice and humans. Int. J. Obes. 32:S98‐S108.
   Leitner, C. and Bartness, T.J. 2011. An intact dorsomedial hypothalamic nucleus, but not the subzona incerta or reuniens nucleus, is necessary for short‐day melatonin signal‐induced responses in Siberian hamsters. Neuroendocrinology 93:29‐39.
   Levin, B.E. and Govek, E. 1998. Gestational obesity accentuates obesity in obesity‐prone progeny. Am. J. Physiol. 275:R1374‐R1379.
   Levin, B.E. and Dunn‐Meynell, A.A. 2000. Defense of body weight against chronic caloric restriction in obesity‐prone and ‐resistant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278:R231‐237.
   Levin, B.E. and Dunn‐Meynell, A.A. 2002. Defense of body weight depends on dietary composition and palatability in rats with diet‐induced obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282:R46‐R54.
   Levin, B.E., Triscari, J., and Sullivan, A.C. 1986. The effect of diet and chronic obesity on brain catecholamine turnover in the rat. Pharmacol. Biochem. Behav. 24:299‐304.
   Levin, B.E., Dunn‐Meynell, A.A., Balkan, B., and Keesey, R.E. 1997. Selective breeding for diet‐induced obesity and resistance in Sprague‐Dawley rats. Am. J. Physiol. 273:R725‐R730.
   Li, A.J., Dinh, T.T., and Ritter, S. 2008. Hyperphagia and obesity produced by arcuate injection of NPY‐saporin do not require upregulation of lateral hypothalamic orexigenic peptide genes. Peptides 29:1732‐1739.
   Lo, C.M., King, A., Samuelson, L.C., Kindel, T.L., Rider, T., Jandacek, R.J., Raybould, H.E., Woods, S.C., and Tso, P. 2010. Cholecystokinin knockout mice are resistant to high‐fat diet‐induced obesity. Gastroenterology 138:1997‐2005.
   Ludwig, D.S., Tritos, N.A., Mastaitis, J.W., Kulkarni, R., Kokkotou, E., Elmquist, J., Lowell, B., Flier, J.S., and Maratos‐Flier, E. 2001. Melanin‐concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J. Clin. Invest. 107:379‐386.
   Man, T.Y., Michailidou, Z., Gokcel, A., Ramage, L., Chapman, K.E., Kenyon, C.J., Seckl, J.R., and Morton, N.M. 2011. Dietary manipulation reveals an unexpected inverse relationship between fat mass and adipose 11beta‐hydroxysteroid dehydrogenase type 1. Am. J. Physiol. Endocrinol. Metab. 300:E1076‐E1084.
   Mayer, J., Bates, M.W., and Dickie, M.M. 1951. Hereditary diabetes in genetically obese mice. Science 113:746‐747.
   Mercer, J.G. and Tups, A. 2003. Neuropeptides and anticipatory changes in behaviour and physiology: seasonal body weight regulation in the Siberian hamster. Eur. J. Pharmacol. 480:43‐50.
   Michaud, E.J., Bultman, S.J., Klebig, M.L., van Vugt, M.J., Stubbs, L.J., Russell, L.B., and Woychik, R.P. 1994. A molecular model for the genetic and phenotypic characteristics of the mouse lethal yellow (Ay) mutation. Proc. Natl. Acad. Sci. U.S.A. 91:2562‐2566.
   Michel, C., Dunn‐Meynell, A., and Levin, B.E. 2004. Reduced brain CRH and GR mRNA expression precedes obesity in juvenile rats bred for diet‐induced obesity. Behav. Brain Res. 154:511‐517.
   Moran, T.H. 2008. Unraveling the obesity of OLETF rats. Physiol. Behav. 94:71‐78.
   Moran, T.H. and Bi, S. 2006. Hyperphagia and obesity in OLETF rats lacking CCK‐1 receptors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361:1211‐1218.
   Morgan, H.D., Sutherland, H.G., Martin, D.I., and Whitelaw, E. 1999. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23:314‐318.
   Morris, M.J., Velkoska, E., and Cole, T.J. 2005. Central and peripheral contributions to obesity‐associated hypertension: Impact of early overnourishment. Exp. Physiol. 90:697‐702.
   Mul, J.D., van Boxtel, R., Bergen, D.J., Brans, M.A., Brakkee, J.H., Toonen, P.W., Garner, K.M., Adan, R.A., and Cuppen, E. 2011. Melanocortin receptor 4 deficiency affects body weight regulation, grooming behavior, and substrate preference in the rat. Obesity (Silver Spring) 20:612‐621.
   Naggert, J.K., Fricker, L.D., Varlamov, O., Nishina, P.M., Rouille, Y., Steiner, D.F., Carroll, R.J., Paigen, B.J., and Leiter, E.H. 1995. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat. Genet. 10:135‐142.
   Naveilhan, P., Hassani, H., Canals, J.M., Ekstrand, A.J., Larefalk, A., Chhajlani, V., Arenas, E., Gedda, K., Svensson, L., Thoren, P., and Ernfors, P. 1999. Normal feeding behavior, body weight and leptin response require the neuropeptide Y Y2 receptor. Nat. Med. 5:1188‐1193.
   Nemeroff, C.B., Lipton, M.A., and Kizer, J.S. 1978. Models of neuroendocrine regulation: use of monosodium glutamate as an investigational tool. Dev. Neurosci. 1:102‐109.
   O'Rahilly, S. 2009. Human genetics illuminates the paths to metabolic disease. Nature 462:307‐314.
   Ohki‐Hamazaki, H., Watase, K., Yamamoto, K., Ogura, H., Yamano, M., Yamada, K., Maeno, H., Imaki, J., Kikuyama, S., Wada, E., and Wada, K. 1997. Mice lacking bombesin receptor subtype‐3 develop metabolic defects and obesity. Nature 390:165‐169.
   Paterson, J.M., Morton, N.M., Fievet, C., Kenyon, C.J., Holmes, M.C., Staels, B., Seckl, J.R., and Mullins, J.J. 2004. Metabolic syndrome without obesity: Hepatic overexpression of 11beta‐hydroxysteroid dehydrogenase type 1 in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 101:7088‐7093.
   Patterson, C.M., Bouret, S.G., Park, S., Irani, B.G., Dunn‐Meynell, A.A., and Levin, B.E. 2010. Large litter rearing enhances leptin sensitivity and protects selectively bred diet‐induced obese rats from becoming obese. Endocrinology 151:4270‐4279.
   Pelleymounter, M.A., Cullen, M.J., Baker, M.B., Hecht, R., Winters, D., Boone, T., and Collins, F. 1995. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540‐543.
   Penicaud, L., Larue‐Achagiotis, C., and Le Magnen, J. 1983. Endocrine basis for weight gain after fasting or VMH lesion in rats. Am. J. Physiol. 245:E246‐E252.
   Perez, C., Fanizza, L.J., and Sclafani, A. 1999. Flavor preferences conditioned by intragastric nutrient infusions in rats fed chow or a cafeteria diet. Appetite 32:155‐170.
   Rogers, P.J. and Blundell, J.E. 1984. Meal patterns and food selection during the development of obesity in rats fed a cafeteria diet. Neurosci. Biobehav. Rev. 8:441‐453.
   Rothwell, N.J. and Stock, M.J. 1979. Combined effects of cafeteria and tube‐feeding on energy balance in the rat. Proc. Nutr. Soc. 38:5A.
   Savage, D.B. 2009. Mouse models of inherited lipodystrophy. Dis. Model. Mech. 2:554‐562.
   Schmidt, I., Fritz, A., Scholch, C., Schneider, D., Simon, E., and Plagemann, A. 2001. The effect of leptin treatment on the development of obesity in overfed suckling Wistar rats. Int. J. Obes. Relat. Metab. Disord. 25:1168‐1174.
   Schwartz, M.W., Woods, S.C., Porte, D.Jr., Seeley, R.J., and Baskin, D.G. 2000. Central nervous system control of food intake. Nature 404:661‐671.
   Schwartz, M.W., Woods, S.C., Seeley, R.J., Barsh, G.S., Baskin, D.G., and Leibel, R.L. 2003. Is the energy homeostasis system inherently biased toward weight gain? Diabetes 52:232‐238.
   Schwartz, S.M., Kemnitz, J.W., and Howard, C.F. Jr. 1993. Obesity in free‐ranging rhesus macaques. Int. J. Obes. Relat. Metab. Disord. 17:1‐9.
   Shepherd, P.R., Gnudi, L., Tozzo, E., Yang, H., Leach, F., and Kahn, B.B. 1993. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J. Biol. Chem. 268:22243‐22246.
   Sims, J.S. and Lorden, J.F. 1986. Effect of paraventricular nucleus lesions on body weight, food intake and insulin levels. Behav. Brain Res. 22:265‐281.
   Stenzel‐Poore, M.P., Cameron, V.A., Vaughan, J., Sawchenko, P.E., and Vale, W. 1992. Development of Cushing's syndrome in corticotropin‐releasing factor transgenic mice. Endocrinology 130:3378‐3386.
   Sullivan, E.L., Grayson, B., Takahashi, D., Robertson, N., Maier, A., Bethea, C.L., Smith, M.S., Coleman, K., and Grove, K.L. 2010a. Chronic consumption of a high‐fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety‐like behavior in nonhuman primate offspring. J. Neurosci. 30:3826‐3830.
   Sullivan, E.L., Smith, M.S., and Grove, K.L. 2010b. Perinatal exposure to high‐fat diet programs energy balance, metabolism and behavior in adulthood. Neuroendocrinology 93:1‐8.
   Susulic, V.S., Frederich, R.C., Lawitts, J., Tozzo, E., Kahn, B.B., Harper, M.E., Himms‐Hagen, J., Flier, J.S., and Lowell, B.B. 1995. Targeted disruption of the beta 3‐adrenergic receptor gene. J. Biol. Chem. 270:29483‐29492.
   Takaya, K., Ogawa, Y., Hiraoka, J., Hosoda, K., Yamori, Y., Nakao, K., and Koletsky, R.J. 1996. Nonsense mutation of leptin receptor in the obese spontaneously hypertensive Koletsky rat. Nat. Genet. 14:130‐131.
   Tamashiro, K.L., Terrillion, C.E., Hyun, J., Koenig, J.I., and Moran, T.H. 2009. Prenatal stress or high‐fat diet increases susceptibility to diet‐induced obesity in rat offspring. Diabetes 58:1116‐1125.
   Tecott, L.H., Sun, L.M., Akana, S.F., Strack, A.M., Lowenstein, D.H., Dallman, M.F., and Julius, D. 1995. Eating disorder and epilepsy in mice lacking 5‐HT2c serotonin receptors. Nature 374:542‐546.
   Thammacharoen, S., Lutz, T.A., Geary, N., and Asarian, L. 2008. Hindbrain administration of estradiol inhibits feeding and activates estrogen receptor‐alpha‐expressing cells in the nucleus tractus solitarius of ovariectomized rats. Endocrinology 149:1609‐1617.
   Thorburn, A.W., Baldwin, M.E., Rosella, G., Zajac, J.D., Fabris, S., Song, S., and Proietto, J. 1999. Features of syndrome X develop in transgenic rats expressing a non‐insulin responsive phosphoenolpyruvate carboxykinase gene. Diabetologia 42:419‐426.
   Tokunaga, K., Matsuzawa, Y., Fujioka, S., Kobatake, T., Keno, Y., Odaka, H., Matsuo, T., and Tarui, S. 1991. PVN‐lesioned obese rats maintain ambulatory activity and its circadian rhythm. Brain Res. Bull. 26:393‐396.
   Tups, A. 2009. Physiological models of leptin resistance. J. Neuroendocrinol. 21:961‐971.
   West, D.B., Diaz, J., and Woods, S.C. 1982. Infant gastrostomy and chronic formula infusion as a technique to overfeed and accelerate weight gain of neonatal rats. J. Nutr. 112:1339‐1343.
   West, D.B., Diaz, J., Roddy, S., and Woods, S.C. 1987. Long‐term effects on adiposity after preweaning nutritional manipulations in the gastrostomy‐reared rat. J. Nutr. 117:1259‐1264.
   Willett, W.C. and Leibel, R.L. 2002. Dietary fat is not a major determinant of body fat. Am. J. Med. 113:S47‐S59.
   Wolff, G.L., Kodell, R.L., Moore, S.R., and Cooney, C.A. 1998. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 12:949‐957.
   Woods, S.C. 1991. The eating paradox: How we tolerate food. Psychol. Rev. 98:488‐505.
   Woods, S.C. 2009. The control of food intake: Behavioral versus molecular perspectives. Cell Metab. 9:489‐498.
   Woods, S.C., D'Alessio, D.A., Tso, P., Rushing, P.A., Clegg, D.J., Benoit, S.C., Gotoh, K., Liu, M., and Seeley, R.J. 2004. Consumption of a high‐fat diet alters the homeostatic regulation of energy balance. Physiol. Behav. 83:573‐578.
   Wu‐Peng, X.S., Chua, S.C. Jr., Okada, N., Liu, S.M., Nicolson, M., and Leibel, R.L. 1997. Phenotype of the obese Koletsky (f) rat due to Tyr763Stop mutation in the extracellular domain of the leptin receptor (Lepr): Evidence for deficient plasma‐to‐CSF transport of leptin in both the Zucker and Koletsky obese rat. Diabetes 46:513‐518.
   Yaswen, L., Diehl, N., Brennan, M.B., and Hochgeschwender, U. 1999. Obesity in the mouse model of pro‐opiomelanocortin deficiency responds to peripheral melanocortin. Nat. Med. 5:1066‐1070.
   Yen, T.T., Gill, A.M., Frigeri, L.G., Barsh, G.S., and Wolff, G.L. 1994. Obesity, diabetes, and neoplasia in yellow A(vy)/‐ mice: ectopic expression of the agouti gene. FASEB J. 8:479‐488.
   Young, J.K. 1992. Hypothalamic lesions increase neuronal immunoreactivity for neuropeptide Y. Brain Res. Bull. 29:375‐380.
   Young, J.K., McKenzie, J.C., Brady, L.S., and Herkenham, M. 1994. Hypothalamic lesions increase levels of neuropeptide Y mRNA in the arcuate nucleus of mice. Neurosci. Lett. 165:13‐17.
   Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J.M. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372:425‐432.
   Zierath, J.R., Ryder, J.W., Doebber, T., Woods, J., Wu, M., Ventre, J., Li, Z., McCrary, C., Berger, J., Zhang, B., and Moller, D.E. 1998. Role of skeletal muscle in thiazolidinedione insulin sensitizer (PPARgamma agonist) action. Endocrinology 139:5034‐5041.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library