A Mouse Model of Furosemide‐Induced Overactive Bladder

Michael S. Saporito1, Eva Zuvich2, Amy DiCamillo2

1 Shaw's Bridge Advisors, LLC, West Chester, 2 Melior Discovery, Inc, Exton
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 5.68
DOI:  10.1002/cpph.10
Online Posting Date:  September, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Detailed in this unit is a mouse model of overactive bladder and urinary incontinence based on diuretic stress‐induced urination. The procedure involves the use of a unique, highly sensitive, and automated urine capturing method to measure urinary latency, frequency, and void volume. Although this method was first described and validated using an anti‐muscarinic drug used for treating overactive bladder, subsequent work has shown that effective non‐cholinergic agents can be detected. These findings indicate good predictive value for this model regarding the possible clinical utility of test agents as treatments for overactive bladder, regardless of their site of action. © 2016 by John Wiley & Sons, Inc.

Keywords: urinary incontinence; micturition; muscarinic receptor; GABAB receptor; oxybutynin; baclofen

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1:

  Materials
  • Adult male C57BL/6 mice (8 to 12 weeks or 18 to 25 g; e.g., Charles River Laboratories)
  • Wax spray (e.g., Turtle Wax Ice) or equivalent
  • 1% carboxymethyl cellulose (CMC; e.g., Sigma‐Aldrich, cat. no. 419273) in deionized water (or other appropriate vehicle)
  • 10 mg/ml oxybutynin HCl (validation compound; e.g., Sigma‐Aldrich, cat. no. O0288000)
  • Test compounds
  • 10 mg/ml furosemide (Sigma‐Aldrich, cat. no. F4381)
  • Rodent housing facility
  • Standard rodent diet (e.g., Purina RMH 1800)
  • Dedicated procedure room
  • Omega USB Data Acquisition Modules with Personal DaqView (pDAQ) software
  • Computer running Windows operating system
  • Balances with accuracy of 0.5 g
  • Micturition chambers (see Fig. ) comprised of:
  • Plastic urine collection cup (e.g., VWR)
  • Upper and lower observation cylinders (cut to length from standard supplied 13 cm Plexiglas tubing)
  • Nylon mesh insert
  • Funnel
  • Load sensors (e.g., GSO‐10 Precision Gram Load Cell; Transducer Technologies)
  • 1‐ml syringes
  • 26‐G needles, 3/8 in. and 5/8 in. lengths
  • Small, flexible plastic oral gavage needles (e.g., Instech, 22‐G × 25 mm)
  • Additional reagents and equipment for mouse blood collection (Rathkolb et al., ) and plasma preparation (Rathkolb et al., )
NOTE: All protocols using live animals must first be reviewed and approved by an Institutional Animal Care and Use Committee (IACUC) and must conform to governmental regulations regarding the care and use of laboratory animals.NOTE: Treatments for each group should be randomized to the chambers to minimize any chamber‐specific effects on the results.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Abraham, N. and Goldman, H.B. 2015. An update on the pharmacotherapy for lower urinary tract dysfunction. Expert Opin. Pharmacother. 16:79‐93. doi: 10.1517/14656566.2015.977253.
  Abrams, P. 2003. Describing bladder storage function: Overactive bladder syndrome and detrusor overactivity. Urology 62:28‐37. doi: 10.1016/j.urology.2003.09.050.
  Abrams, P., Chapple, C.R., Junemann, K.P., and Sharpe, S. 2012. Urinary urgency: A review of its assessment as the key symptom of the overactive bladder syndrome. World J. Urol. 30:385‐392. doi: 10.1007/s00345‐011‐0742‐8.
  Abrams, P., Cardozo, L., Chapple, C., Serdarevic, D., Hargreaves, K., Khullar, V., and Study, G. 2006. Comparison of the efficacy, safety, and tolerability of propiverine and oxybutynin for the treatment of overactive bladder syndrome. Int. J. Urol. 13:692‐698. doi: 10.1111/j.1442‐2042.2006.01387.x.
  Andersson, K.E. 2014. The use of pharmacotherapy for male patients with urgency and stress incontinence. Curr. Opin. Urol. 24:571‐577. doi: 10.1097/MOU.0000000000000106.
  Chu, F.M. and Dmochowski, R. 2006. Pathophysiology of overactive bladder. Am. J. Med. 119:3‐8. doi: 10.1016/j.amjmed.2005.12.010.
  Coyne, K.S., Sexton, C.C., Thompson, C., Kopp, Z.S., Milsom, I., and Kaplan, S.A. 2011. The impact of OAB on sexual health in men and women: Results from EpiLUTS. J. Sex. Med. 8:1603‐1615. doi: 10.1111/j.1743‐6109.2011.02250.x.
  Davila, G.W., Daugherty, C.A., Sanders, S.W., and Transdermal Oxybutynin Study Group. 2001. A short‐term, multicenter, randomized double‐blind dose titration study of the efficacy and anticholinergic side effects of transdermal compared to immediate release oral oxybutynin treatment of patients with urge urinary incontinence. J. Urol. 166:140‐145. doi: 10.1016/S0022‐5347(05)66095‐8.
  Geoffrion, R. and Society of Obstetricians and Gynaecologists of Canada. 2012. Treatments for overactive bladder: Focus on pharmacotherapy. J. Obstet. Gynaecol. Can. 34:1092‐1101. doi: 10.1016/S1701‐2163(16)35440‐8.
  Gras, J. 2012. Mirabegron for the treatment of overactive bladder. Drugs Today 48:25‐32. doi: 10.1358/dot.2012.48.1.1738056.
  Harada, T. and Constantinou, C.E. 1993. The effect of alpha 2 agonists and antagonists on the lower urinary tract of the rat. J. Urol. 149:159‐164.
  Harada, T., Levounis, P., and Constantinou, C.E. 1992. Rapid evaluation of the efficacy of pharmacologic agents and their analogs in enhancing bladder capacity and reducing the voiding frequency. J. Pharmacol. Toxicol. Methods 27:119‐126. doi: 10.1016/1056‐8719(92)90031‐U.
  Igawa, Y., Mattiasson, A., and Andersson, K.E. 1993. Effects of GABA‐receptor stimulation and blockade on micturition in normal rats and rats with bladder outflow obstruction. J. Urol. 150:537‐542.
  Irwin, D.E., Kopp, Z.S., Agatep, B., Milsom, I., and Abrams, P. 2011. Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction. BJU Int. 108:1132‐1138. doi: 10.1111/j.1464‐410X.2010.09993.x.
  Kalinichev, M., Palea, S., Haddouk, H., Royer‐Urios, I., Guilloteau, V., Lluel, P., Schneider, M., Saporito, M., and Poli, S. 2014. ADX71441, a novel, potent and selective positive allosteric modulator of the GABA(B) receptor, shows efficacy in rodent models of overactive bladder. Br. J. Pharmacol. 171:995‐1006. doi: 10.1111/bph.12517.
  Lam, S. and Hilas, O. 2007. Pharmacologic management of overactive bladder. Clin. Interv. Aging. 2:337‐345.
  Lavelle, J.P., Karram, M., Chu, F.M., Dmochowski, R., MacDiarmid, S.A., Staskin, D.R., Sand, P.K., Appell, R., and Erdem, N. 2006. Management of incontinence for family practice physicians. Am. J. Med. 119:37‐40. doi: 10.1016/j.amjmed.2005.12.015.
  Milsom, I., Stewart, W., and Thuroff, J. 2000. The prevalence of overactive bladder. Am. J. Manag. Care. 6:S565‐573.
  Ouslander, J.G. 2004. Management of overactive bladder. N. Engl. J. Med. 350:786‐799. doi: 10.1056/NEJMra032662.
  Rathkolb, B., Fuchs, H., Gailus‐Durner, V., Aigner, B., Wolf, E., and Hrabě de Angelis, M. 2013a. Blood collection from mice and hematological analyses on mouse blood. Curr. Protoc. Mouse Biol. 3:101–119. doi: 10.1002/9780470942390.mo130054.
  Rathkolb, B., Hans, W., Prehn, C., Fuchs, H., Gailus‐Durner, V., Aigner, B., Adamski, J., Wolf, E., and Hrabě de Angelis, M. 2013b. Clinical chemistry and other laboratory tests on mouse plasma or serum. Curr. Protoc. Mouse Biol. 3:69–100. doi: 10.1002/9780470942390.mo130043
  Sacco, E., Bientinesi, R., Tienforti, D., Racioppi, M., Gulino, G., D'Agostino, D., Vittori, M., and Bassi, P. 2014. Discovery history and clinical development of mirabegron for the treatment of overactive bladder and urinary incontinence. Expert Opin. Drug Discov. 9:433‐448. doi: 10.1517/17460441.2014.892923.
  Sand, P.K., Dmochowski, R.R., Reddy, J., and van der Meulen, E.A. 2013. Efficacy and safety of low dose desmopressin orally disintegrating tablet in women with nocturia: Results of a multicenter, randomized, double‐blind, placebo controlled, parallel group study. J. Urol. 190:958‐964. doi: 10.1016/j.juro.2013.02.037.
  Saporito, M.S., Lipinski, C.A., and Reaume, A.G. 2012. Phenotypic in vivo screening to identify new, unpredicted indications for existing drugs and drug candidates. In Drug Repositioning: Bringing New Life to Shelved Assets and Existing Drugs (M.J. Barrett and D.E. Frail, eds.) pp. 253‐290. John Wiley and Sons, Hoboken, NJ.
  Sidaway, P. 2015. Urinary incontinence: Novel insights into the mechanism of action of mirabegron on human bladder smooth muscle. Nat. Rev. Urol. 12:304. doi: 10.1038/nrurol.2015.93.
  Wagg, A.S. 2012. Antimuscarinic treatment in overactive bladder: Special considerations in elderly patients. Drugs Aging 29:539‐548. doi: 10.1007/BF03262272.
  Watanabe, T., Perkash, I., and Constantinou, C.E. 1997. Modulation of detrusor contraction strength and micturition characteristics by intrathecal baclofen in anesthetized rats. J. Urol. 157:2361‐2365. doi: 10.1016/S0022‐5347(01)64781‐5.
  Yoshida, A., Fujino, T., Maruyama, S., Ito, Y., Taki, Y., and Yamada, S. 2010. The forefront for novel therapeutic agents based on the pathophysiology of lower urinary tract dysfunction: Bladder selectivity based on in vivo drug‐receptor binding characteristics of antimuscarinic agents for treatment of overactive bladder. J. Pharmacol. Sci. 112:142‐150. doi: 10.1254/jphs.09R14FM.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library