The Ussing Chamber Assay to Study Drug Metabolism and Transport in the Human Intestine

Beatrice Kisser1, Eva Mangelsen1, Caroline Wingolf2, Lars Ivo Partecke3, Claus‐Dieter Heidecke3, Christer Tannergren2, Stefan Oswald1, Markus Keiser1

1 Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, 2 AstraZeneca R&D, Mölndal, Gothenburg, 3 Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Greifswald
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 7.17
DOI:  10.1002/cpph.22
Online Posting Date:  June, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The Ussing chamber is an old but still powerful technique originally designed to study the vectorial transport of ions through frog skin. This technique is also used to investigate the transport of chemical agents through the intestinal barrier as well as drug metabolism in enterocytes, both of which are key determinants for the bioavailability of orally administered drugs. More contemporary model systems, such as Caco‐2 cell monolayers or stably transfected cells, are more limited in their use compared to the Ussing chamber because of differences in expression rates of transporter proteins and/or metabolizing enzymes. While there are limitations to the Ussing chamber assay, the use of human intestinal tissue remains the best laboratory test for characterizing the transport and metabolism of compounds following oral administration. Detailed in this unit is a step‐by‐step protocol for preparing human intestinal tissue, for designing Ussing chamber experiments, and for analyzing and interpreting the findings. © 2017 by John Wiley & Sons, Inc.

Keywords: ussing chamber; human intestine; in vitro; Papp‐value; transporter protein; metabolizing enzymes

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Determining Compound Transport Through Human Intestinal Tissue Using the Ussing Chamber Model
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Determining Compound Transport Through Human Intestinal Tissue Using the Ussing Chamber Model

  • Agar‐salt bridges (see recipe)
  • Krebs‐bicarbonate Ringer's (KBR) solution (see recipe)
  • Custodiol HTK solution (e.g., Dr. Franz Köhler Chemie GmbH)
  • Saturated 3 M (224 g/liter) KCl solution (stable indefinitely at room temperature)
  • Carbogen gas (5% CO 2, 95% O 2)
  • Intestinal tissue
  • Substrate
  • Laminar flow box (e.g., Herasafe KS, Thermo Fisher Scientific, Darmstadt, Germany)
  • Syringe filters, PVDF, sterile (pore size 0.45 µm)
  • 20‐ or 50‐ml syringe
  • Two 250‐ml glass bottles
  • Styrofoam box filled with ice
  • Ussing chambers (Fig. ), including tissue clamp and tissue holder (Ussing chamber systems can be constructed in‐house or are commercially available from, e.g., Warner Instruments or World Precision Instruments)
  • Small thermometer to measure temperature inside the chambers
  • Circulation pumps (10°C for preparation bowl and 37°C for water jackets; e.g., Alpha A 6 and ECO RE 620 SWN; Lauda, Lauda‐Königshofen, Germany)
  • Two Ag‐AgCl electrodes/chamber (for voltage; e.g., Radiometer Analytical Reference Electrode REF321, Hach Lange GmbH, Düsseldorf, Germany)
  • Two silver (Ag) electrodes/chamber (for current; in‐house material made from silver wire)
  • Flexible tubing (15 to 17 cm; 4 mm i.d. × 6 mm o.d.)
  • Variable area flowmeters (e.g., V‐100 80, HTK, Hamburg, Germany)
  • Bowl with silicone mat for membrane preparation (not commercially available but must be a stainless steel bowl that can be cooled and gassed; Fig. )
  • Pressure reducing regulator (e.g., EN‐ISO 2503 for oxygen, GCE, Fulda, Germany)
  • Scissors (one button scissor or a straight Mayo scissor, One small sharp surgical scissors (e.g., Metzenbaum)
  • Two small and two long forceps
  • Fixing pins
  • Stereomicroscope (e.g., Leica M125, Wetzlar, Germany)
  • 10‐ml graduated cylinders
  • Water bath or incubator (e.g., AL25, Lauda, Lauda‐Königshofen, Germany)
  • Power supply if stirrers are used (e.g., PowerPac Universal Power Supply, BioRad)
  • Data acquisition and analysis system (e.g., UCC‐Labs 401 system, UCC‐Labs AB, Mölndal, Sweden)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Artursson, P., Ungell, A. L., & Lofroth, J. E. (1993). Selective paracellular permeability in two models of intestinal absorption: Cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharmaceutical Research, 10, 1123‐1129. doi: 10.1023/A:1018903931777.
  Avdeef, A., Bendels, S., Di, L., Faller, B., Kansy, M., Sugano, K., … Yamauchi, Y. (2007). PAMPA–critical factors for better predictions of absorption. Journal of Pharmaceutical Sciences, 96, 2893–2909. doi: 10.1002/jps.21068; S0022‐3549(16)32405‐4 [pii].
  Bengtsson, M. W., Makela, K., Herzig, K. H., & Flemstrom, G. (2009). Short food deprivation inhibits orexin receptor 1 expression and orexin‐A induced intracellular calcium signaling in acutely isolated duodenal enterocytes. American Journal of Physiology. Gastrointestinal and Liver Physiology, 296, G651‐G658. doi: 10.1152/ajpgi.90387.2008; 90387.2008 [pii].
  Bexten, M., Oswald, S., Grube, M., Jia, J., Graf, T., Zimmermann, U., … Keiser, M. (2015). Expression of drug transporters and drug metabolizing enzymes in the bladder urothelium in man and affinity of the bladder spasmolytic trospium chloride to transporters likely involved in its pharmacokinetics. Molecular Pharmaceutics, 12, 171–178. doi: 10.1021/mp500532x.
  Bruck, S., Strohmeier, J., Busch, D., Drozdzik, M., & Oswald, S. (2016). Caco‐2 cells ‐ expression, regulation and function of drug transporters compared with human jejunal tissue. Biopharmaceutics & Drug Disposition. 38, 115–126. doi: 10.1002/bdd.2025.
  Cesar‐Razquin, A., Snijder, B., Frappier‐Brinton, T., Isserlin, R., Gyimesi, G., Bai, X., … Superti‐Furga, G. (2015). A call for systematic research on solute carriers. Cell, 162, 478–487. doi: 10.1016/j.cell.2015.07.022; S0092‐8674(15)00899‐5 [pii].
  Choo, E. F., Leake, B., Wandel, C., Imamura, H., Wood, A. J., Wilkinson, G. R., & Kim, R. B. (2000). Pharmacological inhibition of P‐glycoprotein transport enhances the distribution of HIV‐1 protease inhibitors into brain and testes. Drug Metabolism and Disposition, 28, 655–660.
  Choudhuri, S., & Klaassen, C. D. (2006). Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. International Journal of Toxicology, 25, 231–259. doi: 10.1080/10915810600746023; U1P538336R3G82J8 [pii].
  Chougule, P., Herlenius, G., Hernandez, N. M., Patil, P. B., Xu, B., & Sumitran‐Holgersson, S. (2012). Isolation and characterization of human primary enterocytes from small intestine using a novel method. Scandinavian Journal of Gastroenterology, 47, 1334–1343. doi: 10.3109/00365521.2012.708940.
  Clarke, L. L. (2009). A guide to Ussing chamber studies of mouse intestine. American Journal of Physiology. Gastrointestinal and Liver Physiology, 296, G1151‐G1166. doi: 10.1152/ajpgi.90649.2008; 90649.2008 [pii].
  Drozdzik, M., Groer, C., Penski, J., Lapczuk, J., Ostrowski, M., Lai, Y., … Oswald, S. (2014). Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine. Molecular Pharmaceutics, 11, 3547–3555. doi: 10.1021/mp500330y.
  EMA. (2012). Guideline on the investigation of drug interactions.
  Engman, H. A., Lennernas, H., Taipalensuu, J., Otter, C., Leidvik, B., & Artursson, P. (2001). CYP3A4, CYP3A5, and MDR1 in human small and large intestinal cell lines suitable for drug transport studies. Journal of Pharmaceutical Sciences, 90, 1736–1751. doi: 10.1002/jps.1123; S0022‐3549(16)30870‐X [pii].
  Fahrmayr, C., Konig, J., Auge, D., Mieth, M., Munch, K., Segrestaa, J., … Fromm, M. (2013). Phase I and II metabolism and MRP2‐mediated export of bosentan in a MDCKII‐OATP1B1‐CYP3A4‐UGT1A1‐MRP2 quadruple‐transfected cell line. British Journal of Pharmacology, 169, 21–33. doi: 10.1111/bph.12126.
  FDA. (2002). Food‐effect bioavailability and fed bioequivalence studies.
  FDA. (2012). Guidance for industry drug interaction studies–study design, data analysis, implications for dosing, and labeling.
  FDA. (2015). Waiver of in vivo bioavailability and bioequivalence studies for immediate‐release solid oral dosage forms based on a biopharmaceutics classification system.
  Gartzke, D., Delzer, J., Laplanche, L., Uchida, Y., Hoshi, Y., Tachikawa, M., … Fricker, G. (2015). Genomic knockout of endogenous canine p‐glycoprotein in wild‐type, human p‐glycoprotein and human BCRP transfected MDCKII cell lines by zinc finger nucleases. Pharmaceutical Research, 32, 2060–2071. doi: 10.1007/s11095‐014‐1599‐5.
  Geick, A., Eichelbaum, M., & Burk, O. (2001). Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. The Journal of Biological Chemistry, 276, 14581–14587. doi: 10.1074/jbc.M010173200; M010173200 [pii].
  Giacomini, K. M., Huang, S. M., Tweedie, D. J., Benet, L. Z., Brouwer, K. L., Chu, X., … Zhang, L. (2010). Membrane transporters in drug development. Nature Reviews. Drug Discovery, 9, 215–236. doi: 10.1038/nrd3028; nrd3028 [pii].
  Glaeser, H., Bailey, D. G., Dresser, G. K., Gregor, J. C., Schwarz, U. I., McGrath, J. S., … Kim, R. B. (2007). Intestinalnarray drug transporter expression and the impact of grapefruit juice in humans. Clinical Pharmacology and Therapeutics, 81, 362–370. doi: 10.1038/sj.clpt.6100056; 6100056 [pii].
  Gramatte, T., Oertel, R., Terhaag, B., & Kirch, W. (1996). Direct demonstration of small intestinal secretion and site‐dependent absorption of the beta‐blocker talinolol in humans. Clinical Pharmacology and Therapeutics, 59, 541–549. doi: 10.1016/S0009‐9236(96)90182‐4; S0009‐9236(96)90182‐4 [pii].
  Han, T. K., Everett, R. S., Proctor, W. R., Ng, C. M., Costales, C. L., Brouwer, K. L., & Thakker, D. R. (2013). Organic cation transporter 1 (OCT1/mOct1) is localized in the apical membrane of Caco‐2 cell monolayers and enterocytes. Molecular Pharmacology, 84, 182–189. doi: 10.1124/mol.112.084517; mol.112.084517 [pii].
  Hayeshi, R., Hilgendorf, C., Artursson, P., Augustijns, P., Brodin, B., Dehertogh, P., … Ungell, A. L. (2008). Comparison of drug transporter gene expression and functionality in Caco‐2 cells from 10 different laboratories. European Journal of Pharmaceutical Sciences, 35, 383–396. doi: 10.1016/j.ejps.2008.08.004; S0928‐0987(08)00364‐3 [pii].
  Hillgren, K. M., Keppler, D., Zur, A. A., Giacomini, K. M., Stieger, B., Cass, C. E., & Zhang, L. (2013). Emerging transporters of clinical importance: An update from the International Transporter Consortium. Clinical Pharmacology and Therapeutics, 94, 52–63. doi: 10.1038/clpt.(2013).74; clpt201374 [pii].
  Johnson, B. M., Charman, W. N., & Porter, C. J. (2002). An in vitro examination of the impact of polyethylene glycol 400, Pluronic P85, and vitamin E d‐alpha‐tocopheryl polyethylene glycol 1000 succinate on P‐glycoprotein efflux and enterocyte‐based metabolism in excised rat intestine. AAPS PharmSci, 4, E40. doi: 10.1208/ps040440.
  Kansy, M., Senner, F., & Gubernator, K. (1998). Physicochemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry, 41, 1007–1010. doi: 10.1021/jm970530e; jm970530e [pii].
  Karlsson, J., Ungell, A., Grasjo, J., & Artursson, P. (1999). Paracellular drug transport across intestinal epithelia: Influence of charge and induced water flux. European Journal of Pharmaceutical Sciences, 9, 47–56. doi: 10.1016/S0928‐0987(99)00041‐X.; S092809879900041X [pii].
  Keppler, D. (2005). Uptake and efflux transporters for conjugates in human hepatocytes. Methods in Enzymology, 400, 531–542. doi: 10.1016/S0076‐6879(05)00029‐7; S0076‐6879(05)00029‐7 [pii].
  Kerns, E. H., Di, L., Petusky, S., Farris, M., Ley, R., & Jupp, P. (2004). Combined application of parallel artificial membrane permeability assay and Caco‐2 permeability assays in drug discovery. Journal of Pharmaceutical Sciences, 93, 1440–1453. doi: 10.1002/jps.20075; S0022‐3549(16)31525‐8 [pii].
  Knutter, I., Kottra, G., Fischer, W., Daniel, H., & Brandsch, M. (2009). High‐affinity interaction of sartans with H+/peptide transporters. Drug Metabolism and Disposition, 37, 143–149. doi: 10.1124/dmd.108.022418; dmd.108.022418 [pii].
  Kopplow, K., Letschert, K., Konig, J., Walter, B., & Keppler, D. (2005). Human hepatobiliary transport of organic anions analyzed by quadruple‐transfected cells. Molecular Pharmacology, 68, 1031–1038. doi: 10.1124/mol.105.014605; mol.105.014605 [pii].
  Kublbeck, J., Hakkarainen, J. J., Petsalo, A., Vellonen, K. S., Tolonen, A., Reponen, P., … Honkakoski, P. (2016). Genetically modified caco‐2 cells with improved cytochrome P450 metabolic capacity. Journal of Pharmaceutical Sciences, 105, 941–949. doi: 10.1016/S0022‐3549(15)00187‐2; S0022‐3549(15)00187‐2 [pii].
  Kuteykin‐Teplyakov, K., Luna‐Tortos, C., Ambroziak, K., & Loscher, W. (2010). Differences in the expression of endogenous efflux transporters in MDR1‐transfected versus wildtype cell lines affect P‐glycoprotein mediated drug transport. British Journal of Pharmacology, 160, 1453–1463. doi: 10.1111/j.1476‐5381.2010.00801.x; BPH801 [pii].
  Leonard, F., Collnot, E. M., & Lehr, C. M. (2010). A three‐dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Molecular Pharmaceutics, 7, 2103–2119. doi: 10.1021/mp1000795.
  Li, H., Sheppard, D. N., & Hug, M. J. (2004). Transepithelial electrical measurements with the Ussing chamber. Journal of Cystic Fibrosis, 3(Suppl 2), 123–126. doi: 10.1016/j.jcf.2004.05.026; S1569199304000803 [pii].
  Liu, D., & Pan, F. (2016). Advances in cryopreservation of organs. Journal of Huazhong University of Science and Technology Medical Sciences, 36, 153–161. doi: 10.1007/s11596‐016‐1559‐x; 10.1007/s11596‐016‐1559‐x [pii].
  Metzler‐Zebeli, B. U., Hollmann, M., Aschenbach, J. R., & Zebeli, Q. (2017). Comparison of electrogenic glucose transport processes and permeability between proximal and distal jejunum of laying hens. British Poultry Science, March 15, 1–5. doi: 10.1080/00071668.2017.1280773.
  Meyer zu Schwabedissen, H. E., Oswald, S., Bresser, C., Nassif, A., Modess, C., Desta, Z., … Siegmund, W. (2012). Compartment‐specific gene regulation of the CAR inducer efavirenz in vivo. Clinical Pharmacology and Therapeutics, 92, 103–111. doi: 10.1038/clpt.2012.34; clpt201234 [pii].
  Miyake, M., Koga, T., Kondo, S., Yoda, N., Emoto, C., Mukai, T., & Toguchi, H. (2017). Prediction of drug intestinal absorption in human using the Ussing chamber system: A comparison of intestinal tissues from animals and humans. European Journal of Pharmaceutical Sciences, 96, 373–380. doi: 10.1016/j.ejps.2016.10.006; S0928‐0987(16)30429‐8 [pii].
  Muller, J., Keiser, M., Drozdzik, M., & Oswald, S. (2017). Expression, regulation and function of intestinal drug transporters: An update. Biological Chemistry, 398, 175–192. doi: 10.1515/hsz‐2016‐0259; /j/bchm.just‐accepted/hsz‐2016‐0259/hsz‐2016‐0259.xml [pii].
  Muller, J., Lips, K. S., Metzner, L., Neubert, R. H., Koepsell, H., & Brandsch, M. (2005). Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochemical Pharmacology, 70, 1851–1860. doi: 10.1016/j.bcp.2005.09.011; S0006‐2952(05)00588‐5 [pii].
  Nies, A. T., Schwab, M., & Keppler, D. (2008). Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux pumps in the elimination of drugs. Expert Opinion on Drug Metabolism & Toxicology, 4, 545–568. doi: 10.1517/17425255.4.5.545.
  Prueksaritanont, T., Chu, X., Gibson, C., Cui, D., Yee, K. L., Ballard, J., … Hochman, J. (2013). Drug‐drug interaction studies: Regulatory guidance and an industry perspective. The AAPS Journal, 15, 629–645. doi: 10.1208/s12248‐013‐9470‐x.
  Roth, M., Obaidat, A., & Hagenbuch, B. (2012). OATPs, OATs and OCTs: The organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. British Journal of Pharmacology, 165, 1260–1287. doi: 10.1111/j.1476‐5381.2011.01724.x.
  Rozehnal, V., Nakai, D., Hoepner, U., Fischer, T., Kamiyama, E., Takahashi, M., … Mueller, J. (2012). Human small intestinal and colonic tissue mounted in the Ussing chamber as a tool for characterizing the intestinal absorption of drugs. European Journal of Pharmaceutical Sciences, 46, 367–373. doi: 10.1016/j.ejps.2012.02.025; S0928‐0987(12)00103‐0 [pii].
  Sasaki, M., Suzuki, H., Ito, K., Abe, T., & Sugiyama, Y. (2002). Transcellular transport of organic anions across a double‐transfected Madin‐Darby canine kidney II cell monolayer expressing both human organic anion‐transporting polypeptide (OATP2/SLC21A6) and multidrug resistance‐associated protein 2 (MRP2/ABCC2). The Journal of Biological Chemistry, 277, 6497–6503. doi: 10.1074/jbc.M109081200; M109081200 [pii].
  Simoff, I., Karlgren, M., Backlund, M., Lindstrom, A. C., Gaugaz, F. Z., Matsson, P., & Artursson, P. (2016). Complete knockout of endogenous Mdr1 (Abcb1) in MDCK cells by CRISPR‐Cas9. Journal of Pharmaceutical Sciences, 105, 1017–1021. doi: 10.1016/S0022‐3549(15)00171‐9; S0022‐3549(15)00171‐9 [pii].
  Sjöberg, A., Lutz, M., Tannergren, C., Wingolf, C., Borde, A., & Ungell, A. L. (2013). Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. European Journal of Pharmaceutical Sciences, 48, 166–180. doi: 10.1016/j.ejps.2012.10.007; S0928‐0987(12)00389‐2 [pii].
  Strasberg, S. M., Drebin, J. A., & Soper, N. J. (1997). Evolution and current status of the Whipple procedure: An update for gastroenterologists. Gastroenterology, 113, 983–994. doi: 10.1016/S0016‐5085(97)70195‐1.; S0016508597004393 [pii].
  Tzvetkov, M. V., dos Santos Pereira, J. N., Meineke, I., Saadatmand, A. R., Stingl, J. C., & Brockmoller, J. (2013). Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochemical Pharmacology, 86, 666–678. doi: 10.1016/j.bcp.2013.06.019; S0006‐2952(13)00390‐0 [pii].
  Ussing, H. H., & Zerahn, K. (1951). Active transport of sodium as the source of electric current in the short‐circuited isolated frog skin. Acta Physiologica Scandinavica, 23, 110–127. doi: 10.1111/j.1748‐1716.1951.tb00800.x.
  Watson, C. L., Mahe, M. M., Munera, J., Howell, J. C., Sundaram, N., Poling, H. M., … Helmrath, M. A. (2014). An in vivo model of human small intestine using pluripotent stem cells. Nature Medicine, 20, 1310–1314. doi: 10.1038/nm.3737; nm.3737 [pii].
  Westerhout, J., van de Steeg, E., Grossouw, D., Zeijdner, E. E., Krul, C. A., Verwei, M., & Wortelboer, H. M. (2014). A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. European Journal of Pharmaceutical Sciences, 63, 167–177. doi: 10.1016/j.ejps.2014.07.003; S0928‐0987(14)00299‐1 [pii].
  Xu, C., Li, C. Y., & Kong, A. N. (2005). Induction of phase I, II and III drug metabolism/transport by xenobiotics. Archives of Pharmacal Research, 28, 249–268. doi: 10.1007/BF02977789.
PDF or HTML at Wiley Online Library