Overview of High‐Throughput Screening

Michael Entzeroth1, Horst Flotow1, Peter Condron1

1 Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), Singapore
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 9.4
DOI:  10.1002/0471141755.ph0904s44
Online Posting Date:  March, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


High‐throughput screening (HTS) is a key process used in drug discovery to identify hits from compound libraries that may become leads for medicinal chemistry optimization. This updated overview discusses the utilization of compound libraries, compounds derived from combinatorial and parallel synthesis campaigns and natural product sources; creation of mother and daughter plates; and compound storage, handling, and bar coding in HTS. The unit also presents an overview of established and emerging assay technologies (i.e., time‐resolved fluorescence, fluorescence polarization, fluorescence‐correlation spectroscopy, functional whole cell assays, and high‐content assays) and their integration in automation hardware and IT systems. This revised unit provides updated descriptions of state‐of‐the‐art instrumentation and technologies in this rapidly changing environment. The section on assay methodologies now also covers enzyme complementation assays and methods for high‐throughput screening of ion channel activities. Finally, a section on criteria for assay robustness is included discussing the Z′‐factor, which is now a widely accepted criterion for evaluation and validation of high throughput screening assays. Curr. Protoc. Pharmacol. 44:9.4.1‐9.4.27. © 2009 by John Wiley & Sons, Inc.

Keywords: high‐throughput screening; high‐content assays; functional assays; data management; hit identification; lead optimization

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • High‐Throughput Screening
  • Precedents
  • Compound Libraries
  • Combinatorial/Parallel Synthesis Chemistry
  • Natural Products
  • Compound Storage and Handling
  • Assay Formats
  • Mother and Daughter Plates
  • Barcodes
  • Assay Design
  • Classical Receptor and Enzyme Assays
  • Homogeneous Radioactive Bioassays
  • Fluorescence
  • Luminescence
  • Reporter‐Gene Assays
  • Cell‐Based Assays for GPCR and Ion Channel Targets
  • High‐Content Assays and Screening
  • Assay Robustness
  • HTS Informatics
  • Robotic Versus Automated Workstations
  • Hit‐to‐Lead Process
  • Is it Worth the Effort?
  • Outlook and Further Directions
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Ackerman, M.J. and Clapham, D.E. 1997. Ion channels: Basic science and clinical disease. N. Engl. J. Med. 336:1575‐1586.
   Ajay, A., Bemis, G.W., and Murcko, M.A. 1999. Designing libraries with CNS activity. J. Med. Chem. 42:4942‐4951.
   Albanese, C., Christin‐Maitre, S., Sluss, P.M., Crowley, W.F., and Jameson, J.L. 1994. Development of a bioassay for FSH using a recombinant human FSH receptor and a cAMP responsive luciferase reporter gene. Mol. Cell. Endocrinol. 101:211‐209.
   Allen, S., Davies, J., Davies, M.C., Dawkes, A.C., Roberts, C.J., Tendler, S.J., and Williams, P.M. 1999. The influence of epitope availability on atomic‐force microscope studies of antigen‐antibody interactions. Biochem. J. 341:173‐178.
   Allen, M., Reeves, J., and Mellor, G. 2000. High throughput fluorescence polarization: A homogeneous alternative to radioligand binding for cell surface receptors. J. Biomol. Screen. 5:63‐70.
   Astle, T.W. 1998. Microplate standardization report. J. Biomol. Screen. 3:3‐8.
   Bailey, S.N., Wu, R.Z., and Sabatini, D.M. 2002. Applications of transfected cell microarrays in high‐throughput drug discovery. Drug Discov. Today 7:S113‐S118.
   Banks, P. and Harvey, M. 2002. Considerations for using fluorescence polarization in the screening of G protein‐coupled receptors. J. Biomol. Screen. 7:111‐117.
   Baxter, C.A., Murray, C.W., Waszkowycz, B., Li, J., Sykes, R.A., Bone, R.G., Perkins, T.D., and Wylie, W. 2000. New approach to molecular docking and its application to virtual screening of chemical databases. J. Chem. Inf. Comput. Sci. 40:254‐262.
   Baxter, D.F., Kirk, M., Garcia, A.F., Raimondi, A., Holmqvist, M.H., Flint, K.K., Bojanic, D., Distefano, P.S., Curtis, R., and Xie, Y. 2002. A novel membrane potential‐sensitive fluorescent dye improves cell‐based assays for ion channels. J. Biomol. Screen. 7:79‐85.
   Becker, R.A., Chambers, J.M., and Wilks, A.R. 1988. The New S Language: A Programming Environment for Data Analysis and Graphics. Wadsworth & Brooks/Cole, Pacific Grove, California.
   Berners‐Lee, T., Hendler, J., and Lassila, O. 2001. The semantic web. Database and Network J. 36:7‐10.
   Bertera, A.L. 1997. Cytostar‐T scintillation microplates. Pharmaceutical Manufacturing International Jan: 51‐53.
   Broach, J.R. and Thorner, J. 1996. High‐throughput screening for drug discovery. Nature 384:14‐16.
   Buehler, L.K. and Rashidi, H.H. 2005. Bioinformatics basics. Application in biomedical science and medicine. CRC Press, Taylor & Francis, Boca Raton, Fla.
   Bullen, A. 2008. Microscopic imaging techniques for drug discovery. Nature Rev. Drug Disc. 7:54‐67.
   Burney, R.O., Lee, A.I., Leong, D.E., Jones, J.T., Hahn, A.T., Meyer, T., and Yao, M.W.M. 2007. A transgenic mouse model for high content, cell cycle phenotype screening in live primary cells. Cell Cycle 6:2276‐2283.
   Butler, M.S. 2005. Natural products to drugs: Natural product derived compounds in clinical trials. Nat. Prod. Rep. 22:162‐195.
   Cargill, J. 2000. Integrating in vitro and in silico screening in drug discovery: The BioPrint approach. In Discovery 2000: Emerging Strategies for Drug Development, San Diego, April: 10‐13.
   Carpenter, A.E. 2007. Image‐based chemical screening. Nature Chem. Biol. 3:461‐465.
   Carpten, J.D., Faber, A.L., Horn, C., Donoho, G.P., Briggs, S.L., Robbins, C.M., Hostetter, G., Boguslawski, S., Moses, T.Y., Savage, S., Uhlik, M., Lin, A., Du, J., Qian, Y.W., Zeckner, D.J., Tucker‐Kellogg, G., Touchman, J., Patel, K., Mousses, S., Bittner, M., Schevitz, R., Lai, M.H., Blanchard, K.L., and Thomas, J.E. 2007. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448:439‐444.
   Chang, R.S., Lotti, V.J., Keegan, M.E., and Kunkel, K.A. 1986. Characterization of [3H]pentagastrin binding in guinea pig gastric gland—An alternative convenient ligand for receptor binding assay. Biochem. Biophys. Res. Commun. 134:895‐899.
   Chow, A., Lee, E., Jeong, S., Gallagher, S., Bhatt, A., Jensen, M., McReynolds, M., Stevenson, K., Plue, R., Nagle, R., Chien, R.‐L., Hodge, N., Sundberg, S., Kopf‐Sill, A., Parce, J.W., and Yurkovetsky, Y. 1999. Ultra high throughput screening on a microchip using fluorescence polarization (FP) detection. In SmallTalk '99, Association for Laboratory Automation, San Diego.
   Cook, N. 1998. The leadseeker imaging proximity assay technology platform. In The Society for Biomolecular Screening 4th Annual Conference and Exhibition, p. 241. Baltimore.
   Coward, P., Chan, S.D., Wada, H.G., Humphries, G.M., and Conklin, B.R. 1999. Chimeric G proteins allow a high‐throughput signaling assay of Gi‐coupled receptors. Anal. Biochem. 270:242‐248.
   Cummings, M.D., Maxwell, A. C., and DesJarlais, R.L. 2007. Processing of small molecule databases for automated docking. Med. Chem. 3:107‐113.
   Dafforn, A., Kirakossian, H., and Lao, K. 2000. Miniaturization of the luminescent oxygen channeling immunoassay (LOCI) for use in multiplex array formats and other biochips. Clin. Chem. 46:1495‐1497.
   Daly, J.W. 1995. The chemistry of poisons in amphibian skin. Proc. Natl. Acad. Sci. U.S.A. 92:9‐13.
   Dasso, J., Lee, J., Bach, H., and Mage, R.G. 2002. A comparison of ELISA and flow microsphere‐based assays for quantification of immunoglobulins. J. Immunol. Meth. 263:23‐33.
   Di, I. and Kerns, E.H. 2003. Profiling drug‐like properties in discovery research. Curr. Opin. Chem. Biol. 7:402‐408.
   Drews, J. and Ryser, S. 1997. Pharmaceutical innovations between scientific opportunities and economic constraints. Drug Discov. Today 2:365‐372.
   Dunbar, S.A. 2006. Applications of Luminex xMAP technology for rapid, high‐throughput multiplexed nucleic acid detection. Clin. Chim. Acta 363:71‐82.
   Dunlop, J., Bowlby, M., Peri, R., Vasilyev, D., Arias, R. 2008. High‐throughput electrophysiology: An emerging paradigm for ion‐channel screening and physiology. Nature Rev. Drug Disc. 7:358‐368.
   Edwards, B.S., Oprea, T., Prossnitz, E.R., Sklar, L.A. 2004. Flow cytometry for high throughput, high‐content screening. Curr. Opin. Chem. Biol. 8:392‐398.
   Eggert, U.S. and Mitchison, T.J. 2006. Small molecule screening by imaging. Curr. Opin.Chem. Biol. 10:232‐237.
   Ellson, R., Mutz, M., Browning, B., Lee, L., Miller, M.F., and Papen, R. 2003. Transfer of low volumes between microplates using focused acoustics—Automation consideration. J. Assoc. Lab. Autom. 8:29‐34.
   Falconer, M., Smith, F., Surah‐Narwal, S., Congrave, G., Liu, Z., Hayter, P., Ciaramella, G., Keighley, W., Haddock, P., Waldron, G., and Sewing, A. 2002. High‐throughput screening for ion channel modulators. J. Biomol. Screen. 7:460‐465.
   Flotow, H., Leong, C.‐Y., and Buss, A.D. 2002. Development of a Plasmepsin II fluorescence polarization assay suitable for high throughput anti‐malarial drug discovery. J. Biomol. Screen. 7:367‐371.
   Furka, A. and Bennett, W.D. 1999. Combinatorial libraries by portioning and mixing. Comb. Chem. High Throughput Screen. 2:105‐122.
   Gaughan, A. 2006. Bridging the divide: The need for translational informatics. Pharmacogenomics 7:117‐122
   Gedeck, P. and Willett, P. 2001. Visual and computational analysis of structure—Activity relationships in high‐throughput screening data. Curr. Opin. Chem. Biol. 5:389‐395.
   George, T.C., Basiji, D.A., Hall, B.E., Lynch, D.H., Ortyn, W.E., Perry, D.J., Seo, M.J., Zimmerman, C.A., and Morrissey, P.J. 2004. Distinguishing modes of cell death using the Imagestream multispectral imaging flow cytometer. Cytometry A. 59:237‐245.
   Giordano, C. 2000. Standards in automation and instrumentation working group update. J. Biomol. Screen. 5:111.
   Gonzáles, J.E., Oades, K., Leychkis, Y., Harootunian, A., and Negulescu, P.A. 1999. Cell‐based assays and instrumentation for screening ion‐channel targets. Drug Discov. Today 44:431‐439.
   Graham, D.L., Bevan, N., Lowe, P.N., Palmer, M., and Rees, S. 2001. Application of β‐galactosidase enzyme complementation technology as a high throughput format for antagonists of the epidermal growth factor receptor. J. Biomol. Screen. 6:401‐411.
   Haney, S.A., LaPan, P., Pan, J., and Zhang, J. 2006. High‐content screening moves to the front of the line. Drug Disc. Today 11:889‐894.
   Harvey, A.L. 2007. Natural products as a screening resource. Curr. Opin. Chem. Biol. 11:480‐484.
   Heath, W. 1998. LY 333531, a protein kinase C beta‐selective inhibitor. From target identification to clinical development. In The Society for Biomolecular Screening 4th Annual Conference and Exhibition, p.235, Baltimore.
   Hemmilä, I.A. 1991. Application of fluorescence in immunoassays. In Chemical analysis (J.D. Winefordner ed.) Vol. 117, John Wiley & Sons, New York.
   Hemmilä, I., Ståhlberg, T., and Mottram, P. 1995. Bioanalytical Applications of Labeling Technologies. Wallac Oy, Turku, Finland.
   Hess, S.T., Huang, S., Heikal, A.A., and Webb, W.W. 2002. Biological and chemical applications of fluorescence correlation spectroscopy: A review. Biochemistry 41:697‐705.
   Hill, D.C., Wrigley, S.K., and Nisbet, L.J. 1998. Novel screen methodologies for identification of new microbial metabolites with pharmacological activity. Adv. Biochem. Eng. 59:73‐121.
   Ihaka, R. and Gentleman, R. 1996. R: A language for data analysis and graphics. J. Comp. Graph. Stats. 5:299‐314.
   Karet, G. 1999. Are you screening to many compounds? Drug Discov. Develop. Nov./Dec.: 39‐44.
   Kell, D. 1999. Screensavers: trends in high‐throughput analysis. Trends Biotech. 17:89‐91.
   Kennedy, J.P., Williams, L., Bridges, T.M., Daniels, N., Weaver, D., and Lindsley, C.W. 2008. Application of combinatorial chemistry science on modern drug discovery. J. Comb. Chem. 3:345‐54. DOI: 10.1021/cc7001877t.
   Kolb, A.J., Burke, J.W., and Mathis, G. 1997. A homogenous, time‐resolved fluorescence method for drug discovery. In High Throughput Screening: The Discovery of Bioactive Substances (J.P. Devlin, ed.), pp. 345‐360. Marcel Dekker, New York.
   Korn, K. and Krausz, E. 2007. Cell‐based high‐content screening of small molecule libraries. Curr. Opin. Chem. Biol. 11:503‐510.
   Lang, P., Yeow, K., Nichols, A., and Scheer, A. 2006. Cellular imaging in drug discovery. Nature Rev. Drug Disc. 5:343‐356.
   Lattmann, E., Sattayasai, N., Schwalbe, C.S., Niamsanit, S., Billington, D.C., Lattmann, P., Langley, C.A., Singh, H., and Dunn, S. 2006. Novel anti‐bacterials against MRSA: Synthesis of focused combinatorial libraries of tri‐Substituted 2(5H)‐furanones. Curr. Drug Design Technologies 3:125‐134.
   Leach, A.R., Bradshaw, J., Green, D.V., Hann, M.M., and Delany, J.J. 1999. Implementation of a system for reagent selection and library enumeration, profiling, and design. J. Chem. Inf. Comput. Sci. 39:1161‐1172.
   Lew, A. and Chamberlin, A.R. 1999. Blockers of human T cell Kv1.3 potassium channels using de novo ligand design and solid‐phase parallel combinatorial chemistry. Bioorg. Med. Chem. Lett. 9:3267‐3272.
   Liu, B.L., Li, S.J., and Hu, J. 2004. Technological advances in high‐throughput screening. Am. J. PharmacoGenomics 4:263‐276.
   Liang, M., Mallari, C., Rosser, M., Ng, H.P., May, K., Monahan, S., Bauman, J.G., Islam, I., Ghannam, A., Buckman, B., Shaw, K., Wei, G.P., Xu, W., Zhao, Z., Ho, E., Shen, J., Oanh, H., Subramanyam, B., Vergona, R., Taub, D., Dunning, L., Harvey, S., Snider, R.M., Hesselgesser, J., Morrissey, M.M., Perez, H.D. and Horuk, R. 2000. Identification and characterization of a potent, selective and orally active antagonist of the CC chemokine receptor‐1. J. Biol. Chem. 275:19,000‐19,008.
   Lipinsky, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 23:3‐25.
   Lowe, H. and Ehrfeld, W. 1999. Materials for chemical and biological microdevices. In SmallTalk '99, Association for Laboratory Automation, San Diego.
   Macarron, R. 2006. Critical review of the role of HTS in discovery. Drug Disc Today. 11:277‐279.
   MacDonald, M.L., Lamerdin, J., Owens, S., Keon, B.H., Bilter, G.K., Shang, Z., Huang, Z., Yu, H., Dias, J., Minami, T., Michnick, S.W., and Westwick, J.K. 2006. Identifying off‐target effects and hidden phenotypes of drugs in human cells. Nature Chem. Biol. 2:329‐337.
   Michelini, E., Cenvenini, L., Mezzanotte, L., Ablamsky, D., Southworth, T., Branchini, B., and Roda, A. 2008. Spectral resolved gene technology for multiplexed bioluminescence and high‐content screening. Anal. Chem. 80:260‐267.
   Miller, M.A. 2002. Chemical database techniques in drug discovery. Nat. Rev. Drug. Disc. 1:220‐227.
   Mitra, R.D., Silva, C.M., and Youvan, D.C. 1996. Fluorescence resonance energy transfer between blue‐emitting and red‐shifted excitation derivatives of the green fluorescent protein. Gene 173:13‐17.
   Moore, K.W., Chandler, G., Whalley, P., Gannon, D., and Simpson, P. 2006. Efficient sample logistics: From the chemist to the assay plate and beyond. J. Assoc. Lab. Automation 2:92‐99.
   Morrison, L.E. 1988. Time resolved detection of energy transfer: Theory and application to immunoassays. Anal. Biochem. 174:101‐120.
   Narahashi, T. and Herman, M.D. 1992. Overview of toxins and drugs as tools to study excitable membrane ion channels: I. Voltage‐activated channels. Methods Enzymol. 207:620‐643.
   Nasir, M.S. and Jolley, M.E. 1999. Fluorescence polarization: An analytical tool for immunoassay and drug discovery. Comb. Chem. High Throughput Screen. 2:177‐190.
   Ng, H.P., Baumann, J.G., Ghannam, A., Islam, I., Liang, M., Horuk, R., Hesselgesser, J., Snider, R.M., Perez, H.D., and Morrissey, M.M. 1999. Discovery of novel non‐peptide CCR‐1 receptor antagonists. J. Med. Chem. 42:4680‐4694.
   Nicholson, R.L., Welch, M., Ladlow, M., and Spring, D.R. 2007. Small‐molecule screening: Advances in microarraying and cell‐imaging technologies. Chem. Biol. 2:24‐30.
   Ojima, I. 2008. Modern molecular approaches to drug design and discovery. Accounts Chem. Res. 41:2‐3.
   Oldenburg, K.R., Zhang, J.‐H., Chen, T., Maffia, A. II, Blom, K.F., Combs, A.P., and Chung, T.D.Y. 1998. Assay miniaturization for ultra‐high throughput screening of combinatorial and discrete compound libraries: A 9600‐well (0.2 microliter) assay system. J. Biomol. Screen. 3:55‐62.
   Oldenburg, K.R. 1999. Automation basics: Robotics vs. workstations. J. Biomol. Screen. 4:53‐56.
   Olesen, C.E., Yan, Y.X., Liu, B., Martin, D., D'Eon, B., Judware, R., Martin, C., Voyta, J.C., and Bronstein, I. 2000. Novel methods for chemiluminescent detection of reporter enzymes. Methods Enzymol. 326:175‐202.
   Ortyn, W.E., Hall, B.E., George, T.C., Frost, K., Basiji, D.A., Perry, D.J., Zimmerman, C.A., Coder, D., and Morrissey, P.J. 2006. Sensitivity measurement and compensation in spectral imaging. Cytometry A 69:852‐862.
   Palmer, R.C. 1995. In: The Barcode Book: Reading, Printing and Specification of Barcode Symbols. Helmers Publishing, Peterborough, New Hampshire.
   Park, Y.‐W., Cummings, R.T., Garyantes, T., Zheng, S., Hermes, J.D., and Powell, D.J. 1997. An alternative method for reducing the settling time required for SPA beads in 33P protein kinase assays. Proximity News 31:1‐4.
   Perrin, F. 1926. Polarization de la lumière de fluorescence. Vie moyenne de molécules dans l'état excité. J. Phys. Radium 7:390‐400.
   Picard, L., Fang, Y., Frutos, A.G., Webb, B.L., Hong, Y., Lai, F., and Lahiri, J. 2002. Membrane protein arrays: Application for GPCR screening. In The Society for Biomolecular Screening, “High Information Content Screening”, 8th Annual Conference and Exhibition, p.216, The Hague.
   Powell, D., Jessup, B., and Turner, J. 1998. The leadseeker homogeneous imaging system. In The Society for Biomolecular Screening 4th Annual Conference and Exhibition, AM‐2, Baltimore.
   Proudfood, J. 1998. From HTS to the market. The Viramune story. In The Society for Biomolecular Screening 4th Annual Conference and Exhibition, p. 233, Baltimore.
   Ramm, P. 1999. Imaging systems in assay screening. Drug Discov. Today 4:401‐410.
   Rausch, O. 2006. High content screening. Curr. Opin. Chem. Biol. 10:316‐320.
   Razvi, E.S. 1999. High‐throughput screening: Where are we today. Drug Market Dev. 10:208‐211.
   Rigler, R. 1995. Fluorescence correlation, single molecule detection and large number screening. Applications in biotechnology. J. Biotech. 41:177‐186.
   Roden, D.M. and Kupershmidt, S. 1999. From genes to channels: Normal mechanisms. Cardiovasc. Res. 42:318‐26.
   Rose, D. 1999. Microdispensing technologies in drug discovery. Drug Disc. Today 4:411‐419.
   Rossi, F., Charlton, C.A., and Blau, H.M. 1997. Monitoring protein‐protein interactions in intact eukaryotic cells by β‐galactosidase complementation. Proc. Natl. Acad. Sci. U.S.A. 94:8405‐8410.
   Rudolf, K., Eberlein, W., Engel, W., Pieper, H., Entzeroth, M., Hallermayer, G., and Doods, H. 2005. Development of human calcitonin gene‐related peptide (CGRP) receptor antagonists. 1. Potent and selective small molecule CGRP antagonists. 1‐[N‐2‐[3,5‐dibromo‐N‐[[4‐(3,4‐dihydro‐2(1H)‐oxoquinazolin‐3‐yl)‐1‐ piperidinyl]carbonyl]‐D‐tyrosyl]‐L‐lysyl]‐4‐(4‐pyridinyl)piperazine: The first CGRP antagonist for clinical trials in acute migraine. Curr. J. Med. Chem. 48:5921‐5931.
   Sakaue‐Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H., Imamura, T., Ogawa, M., Masai, H., and Miyawaki, A. 2008. Visualizing spatiotemporal dynamicsof multicellular cell‐cycle progression. Cell 132:487‐498.
   Sasaki, T., Kikuchi, T., Yumoto, N., Yoshimura, N., and Murachi, T. 1984. Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates. J. Biol. Chem. 259:12,489‐12,494.
   Sato, A., 1996. The search for new drugs from marine organisms, J. Toxicol. Toxin Rev. 15:171‐198.
   Sharpe, I.A., Gehrmann, J., Loughnan, M.L., Thomas, L., Adams, D.A., Atkins, A., Palant, E., Craik, D.J., Adams, D.J., and Lewis, R.J. 2001. Two new classes of conopeptides inhibit the α1‐adrenoceptor and noradrenaline transporter. Nature Neurosci. 4:902‐907.
   Sklar, L.A., Carter, M.B., and Edwards, B.S. 2007. Flow cytometry for drug discovery, receptor pharmacology and high throughput screening. Curr. Opin. Pharmacol. 7:527‐534.
   Spaller, M.R., Burger, M.T., Fardis, M., and Bartlett, P.A. 1997. Synthetic strategies in combinatorial chemistry. Curr. Opin. Chem. Biol. 1:47‐53.
   Stevens, M.E., Bouchard, P.J., Kariv, I., Chung, T.D.Y., and Oldenburg, K.R. 1998. Comparison of automation equipment in high throughput screening. J. Biomol. Screen. 3:305‐311.
   Sullivan, E., Tucker, E.M., and Dale, I.L. 1999. Measurement of [Ca2+] using the fluorometric imaging plate reader (FLIPR). Methods Mol. Biol. 114:125‐133.
   Sundberg, S.A. 2000. High‐throughput and ultra‐high‐throughput screening: Solution‐ and cell‐based approaches. Curr. Opin. Biotechnol. 11:47‐53.
   Swedlow, J.R., Goldberg, I., Brauner, E., and Sorger, P.K. 2003. Informatics and quantitative analysis in biological imaging. Science 300:100‐102.
   Tan, D.S., Foley, M.A., Shair, M.D., and Schreiber, S.L. 1998. Stereosynthesis of over two million compounds having structural features both reminiscent of natural products and compatible with miniaturized cell‐based assays. J. Am. Chem. Soc. 120:8565‐8566.
   Tang, W., Kang, J., Wu, X., Rampe, D., Wang, L., Shen, H., Li, Z., Dunnington, D., and Garyantes, T. 2001. Development and evaluation of high throughput functional assay methods for hERG potassium channel. J. Biomol. Screen. 6:325‐331.
   Tang, W. 2002. Functional hERG potassium channel screening with ICR8000. In ISLAR 2002, International Symposium of Laboratory Automation and Robotics, Zymark Corp., Hopkinton, Massachusetts.
   Terstapen, C.G. 1999. Functional analysis of native and recombinant ion channels using a high capacity nonradioactive rubidium efflux assay. Anal. Biochem. 272:149‐155.
   Thomson, W., Frazer, J., and Unett, D. 2005. Functional assays for screening GPCR targets. Curr. Opin. Biotech. 16:655‐665.
   Ullman, E.F., Kirakossian, H., Singh, S., Wu, Z.P., Irvin, B.R., Pease, J.S., Switchenko, A.C., Irvine, J.D., Dafforn, A., Skold, C.N., and Wagner, D.B. 1994. Luminescent oxygen channeling immunoassay: Measurement of particle binding kinetics by chemiluminescence. Proc. Natl. Acad. Sci. U.S.A. 91:5426‐5430.
   Veber, D.F., Johnson, S.R., Cheng, H.‐Y., Smith, B.R., Ward, K.W., and Kopple, K.D. 2002. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45:2615‐2623.
   Velicelebi, G., Stauderman, K.A., Varney, M.A., Akong, M., Hess, S.D., and Johnson, E.C. 1999. Fluorescence techniques for measuring ion channel activity. Methods Enzymol. 294:20‐47.
   Vignali, D.A.A. 2000. Multiplexed particle‐based flow cytometric assays. J. Immunol. Meth. 243:243‐255.
   Vistoli, G., Pedretti, A., and Testa, B. 2008. Assessing drug‐likeness: What are we missing? Drug Disc. Today 13:285‐294.
   Walters, W.P., Stahl, M.T., and Murcko, M.A. 1998. Virtual screening: An overview. Drug Disc. Today 3:160‐178.
   Wang, J. and Ramnarayan, K. 1999. Toward designing drug‐like libraries: A novel computational approach for prediction of drug feasibility of compounds. J. Comb. Chem. 1:524‐33.
   Warr, W.A. 1997. Combinatorial chemistry and molecular diversity. J. Chem. Inf. Comput. Sci. 37:134‐140.
   Weininger, D. 1988. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 2:31‐36.
   Waszkowycz, B. 2008. Towards improving compound selection in structure‐based virtual screening. Drug Disc. Today 13:219‐226.
   Whiteaker, K.L., Gopalakrishnan, S.M., Groebe, D., Shieh, C.C., Warrior, U., Burns, D.J., Coghlan, M.J., Scott, V.E., and Gopalakrishnan, M. 2001. Validation of FLIPR membrane potential dye for high throughput screening of potassium channel modulators. J. Biomol. Screen. 6:305‐312.
   Widley, M.J., Homon, C.A., and Hutchins, B. 1999. Allegro™ : Moving the bar upwards. J. Biomol. Screen. 4:57‐60.
   Willett, P., Barnard, J.M., and Downs, G.M. 1998. Chemical Similarity Searching. J. Chem. Inf. Comp. Sci. 38:976‐982.
   Willett, P. 2000. Chemoinformatics: Similarity and diversity in chemical libraries. Curr. Opin. Biotechnol. 11:85‐88.
   Williams, M., Mehlin, C., Raddatz, R., and Triggle, D.J. 2008. Receptor targets in drug discovery. In Pharmacology: From Drug Development to Gene Therapy. (R.A. Meyers, ed.) pp. 315‐358. Wiley‐VCH, Weinheim, Germany.
   Wilson‐Lingardo, L., Davis, P.W., Ecker, D.J., Hebert, N., Acevedo, O., Sprankle, K., Brennan, T., Schwarcz, L., Freier, S.M., and Wyatt, J.R. 1996. Deconvolution of combinatorial libraries for drug discovery: Experimental comparison of pooling strategies. J. Med. Chem. 39:2720‐2726.
   Winkler, T., Kettling, U., Koltermann, A., and Eigen, M. 1999. Confocal fluorescence coincidence analysis: An approach to ultra high‐throughput screening. Proc. Natl. Acad. Sci. U.S.A. 96:1375‐1378.
   Wolff, M., Wiedenmann, J., Nienhaus, G.U., Valler, M., and Heilker, R. 2006. Novel fluorescent proteins for high‐content screening. Drug Disc. Today 11:1054‐1060.
   Xu, G.W., Mawji, I.A., Macrae, C.J., Koch, C.A., Datti, A., Wrana, J.L., Dennis, J.W., and Schimmer, A.D. 2008. A high‐content chemical screen identifies ellipticine as a modulator of p53 nuclear localization. Apoptosis 13:413‐422.
   Xue, L. and Bajorath, J. 2000. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb. Chem. High Throughput Screen. 3:363‐372.
   Xuei, X., Syn, J., Glaser, K., Humphrey, P., Kofron, J., Warrior, U., and Burns, D. 1999. Continuous format high throughput screening for inhibitors of a phosphatase enzyme and its comparison with 96‐well plate assays. In The Society for Biomolecular Screening 5th Annual Conference and Exhibition, Edinburgh.
   Yan, Y.‐X., Boldt‐Hule, D.M., Tillotson, B.P., Gee, M.A., D'Eon, B.J., Chang, X.‐J., Olesen, C.E.M., and Palmer, M.A.J. 2002. Cell‐based high‐throughput screening assay system for monitoring G‐protein‐coupled receptor activation using β‐galactosidase enzyme complementation technology. J. Biomol. Screen. 7:451‐459.
   Young, D.W., Bender, A., Hoyt, J., McWhinnie, E., Chirn, G.W., Tao, C.Y., Tallarico, J.A., Labow, M., Jenkins, J.L., Mitchison, T.J., and Feng, Y. 2008. Integrating high‐content screening and ligand‐target prediction to identify mechanism of action. Nature Chem. Biol. 4:59‐68.
   Zerhouni, E.A. 2007. Translational research: Moving discovery to practice. Clin. Pharmacol. Ther. 81:126‐128.
   Zhang, J.‐H., Chung, T.D.Y., and Oldenburg, K.R. 1999. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4:67‐73.
   Zlokarnik, G., Negulescu, P.A., Knapp, T.E., Mere, L., Burres, N., Feng, L., Whitney, M., Roemer, K., and Tsien, R.Y. 1998. Quantitation of transcription and clonal selection of single living cells with beta‐lactamase as reporter. Science 279:84‐88.
PDF or HTML at Wiley Online Library