Testing for Inverse Agonism with Constitutive Receptor Systems

Terry Kenakin1

1 GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 9.5
DOI:  10.1002/0471141755.ph0905s32
Online Posting Date:  April, 2006
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit discusses the use of constitutive 7‐transmembrane/G protein coupled receptor (7TM/GPCR) activity for screening new drug entities. Following an introduction to constitutive 7TM/GPCR activity, the unit centers on the three basic components of a constitutive screening system: the receptor, the receptor coupling components (G protein), and the response reporting system. The design of specific assays to detect inverse agonism and the application of such systems to drug screening are also discussed. Finally, the relative advantages and disadvantages of inverse agonists as therapeutic agents are considered.

Keywords: constitutive; inverse agonist; neutral antagonist; G protein coupled receptors; orphan receptors; drug screening

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • GPCR Constitutive Activity
  • The Influence of Ligands on Constitutive GPCR Systems
  • Optimal Conditions for Constitutively Active Systems
  • Advantages and Disadvantages of Constitutively Active GPCR Assay Systems
  • Conclusions
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Adan, R.A.H. and Kas, M.J.H. 2003. Inverse agonism gains weight. Trends Pharmacol. Sci. 24:315‐321.
   Arvanitakis, L., Geras‐Raaka, E., Varma, A., Gershengorn, M.C., and Cesarman, E. 1997. Human herpesvirus KSHV encodes a constitutively active G‐protein‐coupled receptor linked to cell proliferation. Nature 385:437‐350.
   Allen, L.F., Lefkowitz, R.J., Caron, M.G., and Cotecchia, S. 1991. G protein‐coupled receptor genes as protooncogenes: Constitutively activating mutation of the α1B‐adrenergic receptor enhances mitogenesis and tumorigenicity. Proc. Natl. Acad. Sci. U.S.A. 88:11354‐11358.
   Chen, G., Way, J., Armour, S., Watson, C., Queen, K., Jayawickreme, C., Chen, W‐J., and Kenakin, T.P. 2000. Use of constitutive G protein‐coupled receptor activity for drug discovery. Mol. Pharmacol. 57:125‐134.
   Costa, T. and Herz, A. 1989. Antagonists with negative intrinsic activity at δ‐opioid receptors coupled to GTP‐binding proteins. Proc. Natl. Acad. Sci. U.S.A. 86:7321‐7325.
   Coughlin, S.R. 1994. Expanding horizons for receptors coupled to G proteins: Diversity and disease. Curr. Opin. Cell Biol. 6:191‐206.
   Deakin, M. and Williams, J.G. 1992. Histamine H2‐receptor antagonists in peptic ulcer disease. Efficacy in healing peptic ulcers. Drugs 44:709‐19.
   De Lean, A., Stadel, J.M, and Lefkowitz, R.J. 1980. A ternary complex model explains the agonist‐specific binding properties of the adenylate cyclase‐coupled β‐adrenergic receptor. J. Biol. Chem. 255:7108‐7117.
   Dohlman, H.G., Thorner, J., Caron, M.G., and Lefkovitz, R.J. 1991. Model systems for the study of seven‐transmembrane‐segment receptors. Annu. Rev. Biochem. 60:653‐688.
   Hedin, K.E., Duerson, K., and Clapham, D.E. 1993. Specificity of receptor‐G protein interactions: Searching for the structure behind the signal. Cell Signal. 5:505‐518.
   Holst, B., Cygankiewicz, A., Jensen, T.H., Ankersen, M., and Schwartz, T.W. 2003. High constitutive signaling of the ghrelin receptor–identification of a potent inverse agonist. Mol Endocrinol. 17:2201‐10.
   Kenakin, T.P. 1997. The classification of seven transmembrane receptors in recombinant expression systems. Pharmacol. Rev. 48:413‐463.
   Kenakin, T.P., Morgan, P., Lutz, M., and Weiss, J. 2000. The evolution of drug‐receptor models: The cubic ternary complex model for G protein coupled receptors. In The Pharmacology of Functional, Biochemical, and Recombinant Systems, Handbook of Experimental Pharmacology, Vol. 148 (T.P. Kenakin and J.A. Angus, eds.) pp. 147‐166. Springer, Heidelberg, Germany.
   Kenakin, T.P. 2001. Inverse, protean, and ligand‐selective agonism: Matters of receptor conformation. FASEB J. 15:598‐611.
   Kenakin, T.P. 2004. Efficacy as a vector: The prevalence and paucity of inverse agonism Mol. Pharmacol. 65:2‐11.
   Kjelsberg, M.A., Cottechia, S., Ostrowski, J., Caron, M.G., and Lefkowitz, R.J. 1992. Constitutive activation of the α1B‐adrenergic receptor by all amino acid substitutions at a single site. J. Biol. Chem. 267:1430‐1433.
   Konig, B., Arendt, A., McDowell, J.H., Kahlert, M., Hargrave, P.A., and Hofmann, K.P. 1989. Three cytoplasmic loops of rhodopsin interact with transducin. Proc. Natl. Acad. Sci. U.S.A. 86:6878‐6882.
   Kudo, M., Osuga, Y., Kobilka, B.K., and Hsueh, A.J.W. 1996. Transmembrane regions V and VI of the human luteinizing hormone receptor are required for constitutive activation by a mutation in the third intracellular loop. J. Biol. Chem. 271:22470‐22478.
   Lee, T.W., Cotecchia, S., and Milligan, G. 1997. Up‐regulation of the levels of expression and function of a constitutively active mutant of the hamster α1B‐adrenoceptor. Biochem. J. 325:733‐739.
   Lyons, J.C.A., Landis, G., Harsh, G., Vallar, L., Gruenwalkd, K., Feichtinger, H., Duh, Q.‐Y., Clark, O.H., Kawasaki, E., Bourne, H.R., and McCormick, F. 1990. Two G protein oncogenes in human endocrine tumors. Science 249:655‐659.
   MacEwan, D.J., and Milligan, G. 1996. Inverse agonist‐induced up‐regulation of the human β2‐adrenoceptor in transfected neuroblastoma X glioma hybrid cells. Mol. Pharmacol. 50:1479‐1486.
   Milligan, G. and Bond, R.A. 1997. Inverse agonism and the regulation of receptor number. Trends Pharmacol. Sci. 18:468‐474.
   Munch, G., Dees, C., Hekman, M., and Palm, D. 1991. Multisite contacts involved in coupling of the β‐adrenergic receptor with the stimulatory guanine‐nucleotide‐binding regulatory protein. Eur. J. Biochem. 198:357‐364.
   Naylor, L.H. 1999. Reporter gene technology: The future looks bright. Biochem. Pharmacol. 58:749‐757.
   Nwolko, C.U., Smith, J.T.L., Gavey, G.C., Sawyer, A.M., and Pounder, R.E. 1990. Tolerance during 29 days of conventional dosing with cimetidine, nizatidine, famotidine or ranitidine. Aliment. Pharmacol. Ther. 4:29‐45.
   Nwolko, C.U., Smith, J.T.L., Sawyer, A.M., and Pounder, R.E. 1991. Rebound intragastric hyperacidity after abrupt withdrawal of histamine H2‐receptor blockade. Gut 32:1455‐1460.
   Parmentier, M‐L., Joly, C., Restituito, S., Bockaert, J., Grau, Y., and Pin, J‐P. 1998. The G protein‐coupling profile of metabotropic glutamate receptors, as determined with exogenous G proteins, is independent of their ligand recognition domain. Mol. Pharmacol. 53:778‐786.
   Porter, J.E., Hwa, J., and Perez, D.M. 1996. Activation of the α1b‐adrenergic receptor is initiated by disruption of an interhelical salt bridge constraint. J. Biol. Chem. 271:28318‐28323.
   Rossier, O., Abuim, L., Fanelli, F., Leonardi, A., and Cotecchia, S. 1999. Inverse agonism and neutral antagonism at α1a‐ and α1b‐adrenergic receptor subtypes. Mol. Pharmacol. 56:858‐866.
   Rouleau, A., Ligneau, X., Tardivel‐Lacombe, J., Morisset, S., Gbahou, F., Schwartz, J.C., and Arrang, J.M. 2002. Histamine H3‐receptor‐mediated [35S]GTPgamma [S] binding: Evidence for constitutive activity of the recombinant and native rat and human H3 receptors. Br. J. Pharmacol. 135:383‐392.
   Rosenkilde, M.M. and Schwartz, T.W. 2000. Potency of ligands correlates with affinity measured against agonist and inverse agonists but not against neutral ligand in constitutively active chemokine receptor. Mol. Pharmacol. 57:602‐609.
   Samama, P., Cotecchia, S., Costa, T., and Lefkowitz, R.J. 1993. A mutation‐induced activated state of the β2‐adrenergic receptor: Extending the ternary complex model. J. Biol. Chem. 268:4625‐4636.
   Schwartz, T.W. and Rosenkilde, M.M. 1996. Is there a ‘lock’ for all agonist ‘keys’ in 7TM receptors? Trends Pharmacol. Sci. 17:213‐216.
   Senogles, S.E., Spiegel, A.M., Pardrell, E., Iyengar, R., and Caron, M. 1990. Specificity of receptor G protein interactions. J. Biol. Chem. 265:4507‐4514.
   Smit, M.J., Leurs, R., Alewijnse, A.E., Blauw, J., Amerongen, G.P.V., Vandevrede, Y., Roovers, E., and Timmerman, H. 1996. Inverse agonism of histamine H‐2 antagonists accounts for up‐regulation of spontaneously active histamine H‐2 receptors. Proc. Natl. Acad. Sci. U.S.A. 93:6802‐6807.
   Spalding, T.A., Burstein, E.S., Brauner‐Osborne, H., Hill‐Eubanks, D., and Brann, M.R. 1995. Pharmacology of a constitutively active muscarinic receptor generated by random mutagenesis. J. Pharmacol. Exp. Ther. 275:1274‐1279.
   Spiegel, A.M. 1996. Defects in protein‐coupled signal transduction in human disease. Annu. Rev. Physiol. 58:143‐170.
   Spiegel, A.M., Weinstein, L.S., and Shenker, A. 1993. Abnormalities in G protein‐coupled signal transduction pathways in human disease. J. Clin. Invest. 92:1119‐1125.
   Strader, C.D., Fong, T.M., Tota, M.R., Underwood, D., and Dixon, R.A.F. 1994. Structure and function of G protein‐coupled receptors. Annu. Rev. Biochem. 63:101‐132.
   Tian, W‐N., Duzic, E., Lanier, S.M., and Deth, R.C. 1994. Determinants of α2‐adrenergic receptor activation of G proteins: Evidence for a precoupled receptor/G protein state. Mol. Pharmacol. 45:524‐531.
   Virgolini, I., Yang, Q., Li, S., Angelberger, P., Neuhold, N., Nierderle, B., Scheithauer, W., and Valent, P. 1994. Cross‐competition between vasoactive intestinal peptide and somatostatin for binding to tumor cell membrane receptors. Cancer Res. 54:690‐700.
   Weinstein, L.S., Gejman, P.V., De Mazancourt, P., American, N., and Spiegel, A.M. 1990. A heterozygous 4‐bp deletion mutation in the Gsα gene (GNAS1) in a patient with Albright hereditary osteodystrophy. Genomics 13:1319‐1321.
   Weiss, J.M., Morgan, P.H., Lutz, M.W., and Kenakin, T.P. 1996a. The cubic ternary complex receptor‐occupancy model. I. Model description. J. Theor. Biol. 178:151‐167.
   Weiss, J.M., Morgan, P.H., Lutz, M.W., and Kenakin, T.P. 1996b. The cubic ternary complex receptor‐occupancy model. II. Understanding apparent affinity. J. Theor. Biol. 178:169‐182.
   Weiss, J.M., Morgan, P.H., Lutz, M.W., and Kenakin, T.P. 1996c. The cubic ternary complex receptor‐occupancy model. III. Resurrecting Efficacy. J. Theor. Biol. 181:381‐397.
   Wilder‐Smith, C.H., Gennoni, T.E., Zeyen, B., Halter, F., and Merki, H.S. 1990. Tolerance to oral H2‐receptor antagonists. Dig. Dis. Sci. 35:976‐983.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library