Overview on the Use of Therapeutic Antibodies in Drug Discovery

Michael Roguska1, Zehra Kaymakcalan1, Jochen Salfeld1

1 Abbott Bioresearch Center, Worcester, Massachusetts
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 9.7
DOI:  10.1002/0471141755.ph0907s27
Online Posting Date:  January, 2005
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The number of therapeutic antibodies approved by regulatory agencies as novel drugs and the number of antibodies in development has increased significantly. The modular nature of antibody structure has enabled researchers to more predictably design therapeutic antibodies by choosing appropriate functional features most appropriate for a given antibody target and clinical indication. Advances in recombinant antibody technologies have allowed the routine generation of antibodies that can satisfy stringent drug design criteria, such as low immunogenicity, high affinity, target specificity, and commercially viable manufacturing methods. Engineering design opportunities exist for both the variable and the constant regions that encompass, in addition to antigen specificity and affinity, effector functions that mediate immune complex clearance or pharmacokinetics. These are discussed in the context of relevant in vivo and in vitro technologies, such as human IgG transgenic mice, phage display, and biologics manufacturing. Finally, therapeutic antibodies are compared with traditional drugs with respect to target class, selectivity, route of administration, intellectual property issues, and lead discovery and optimization.

Keywords: therapeutic antibodies; antibody generation; antibody engineering

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • History of Therapeutic Antibodies
  • Basic Antibody Structure
  • Technologies for Generation of Therapeutic Human Antibodies
  • Design Opportunities for an Antibody Therapeutic
  • Immunogenicity
  • Expression Technologies
  • How do Therapeutic Antibodies Compare with Traditional Drugs?
  • Summary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

   Abramowicz, D., Schandene, L., Goldman, M., Crusiaux, A., Vereerstraeten, P., De Pauw, L., Wybran, J., Kinnaert, P., Dupont, E., and Toussaint, C. 1989. Release of tumor necrosis factor, interleukin‐2, and gamma‐interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation 47:606‐608.
   Ackermann, J.R., LeFor, W.M., Kahana, L., Weinstein, S., Shires, D.L., Tardif, G., and Baxter, J. 1998. Four‐year experience with exclusive use of cytomegalovirus antibody (CMV‐Ab)‐negative donors for CMV‐Ab‐negative kidney recipients. Transplant Proc. 20:469‐471.
   Adams, G.P., Schier, R., McCall, A.M., Simmons, H.H., Horak, E.M., Alpaugh, R.K., Marks, J.D., and Weiner, L.M. 2001. High affinity restricts the localization and tumor penetration of single‐chain fv antibody molecules. Cancer Res. 61:4750‐4755.
   Bai, J., Sui, J., Zhu, R.Y., Tallarico, A.S., Gennari, F., Zhang, D., and Marasco, W.A. 2003. Inhibition of Tat‐mediated transactivation and HIV‐1 replication by human anti‐hCyclinT1 intrabodies. J. Biol. Chem. 278:1433‐1442.
   Barbas, C.F. 3rd., Bain, J.D., Hoekstra, D.M., and Lerner, R.A. 1992. Semisynthetic combinatorial antibody libraries: A chemical solution to the diversity problem. Proc. Natl. Acad. Sci. U.S.A. 89:4457‐4461.
   Boder, E.T., Midelfort, K.S., and Wittrup, K.D. Directed evolution of antibody fragments with monovalent femtomolar antigen‐binding affinity. 2000. Proc. Natl. Acad. Sci. U.S.A. 97:10701‐10705.
   Brekke, O.H. and Sandlie, I. 2003. Therapeutic antibodies for human diseases at the dawn of the twenty‐first century. Nat. Rev. Drug Discov. 2:52‐62.
   Bruggemann, M., Winter, G., Waldmann, H., and Neuberger, M.S. 1989. The immunogenicity of chimeric antibodies. J. Exp. Med. 170:2153‐2157.
   Budinger, L. and Hertl, M. 2000. The skin as target for IgE‐mediated allergic reactions: Immunologic mechanisms in hypersensitivity reactions to metal ions: An overview. Allergy (CPH) 55:108‐115.
   Cavagnaro, J.A. 2002. Preclinical safety evaluation of biotechnology‐derived pharmaceuticals. Nat. Rev. Drug Discov. 1:469‐475.
   Ceuppens, J.L., Bloemmen, F.J., and van Wauwe, J.P. 1985. T cell unresponsiveness to the mitogenic activity of OKT3 antibody results from a deficiency of monocyte Fc gamma receptors for murine IgG2a and inability to cross‐link the T3‐Ti complex. J. Immunol. 135:3882‐3886.
   Cohen, P.A. 2002. Intrabodies. Targeting scFv expression to eukaryotic intracellular compartments. Methods Mol. Biol. 178:367‐378.
   Cooley, S., Burns, L.J., Repka, T., and Miller, J.S. 1999. Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody‐dependent cellular cytotoxicity against LFA‐3 and HER2/neu. Exper. Hematol. 27:1533‐1541.
   Clackson, T., Hoogenboom, H.R., Griffiths, A.D., and Winter, G. 1991. Making antibody fragments using phage display libraries. Nature 352:624‐628.
   Clynes R.A.,s Towers T.L., Presta L.G., and Ravetch J.V.. 2000. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat. Med. 6:443‐446.
   Dall'Acqua, W.F., Woods, R.M., Ward, E.S., Palaszynski, S.R., Patel, N.K., Brewah, Y.A., Wu, H., Kiener, P.A., and Langermann, S. 2002. Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. J. Immunol, 169:5171‐5180.
   de Wildt, R.M., Mundy, C.R., Gorick, B.D., and Tomlinson, I.M. 2000. Antibody arrays for high‐throughput screening of antibody‐antigen interactions. Nat. Biotechnol. 18:989‐994.
   Donaldson, J.G. 2004. Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J. Biol. Chem. 278:41573‐41576.
   Duncan, A.R. and Winter, G. 1988. The binding site for C1q on IgG. Nature 332:738‐740.
   Duncan, A.R., Woof, J.M., Partridge, L.J., Burton, D.R., and Winter, G. 1988. Localization of the binding site for the human high‐affinity Fc receptor on IgG. Nature 332:563‐564.
   Fahrner, R.L., Knudsen, H.L, Basey, C.D., Galan, W., Feuerhelm, D., Vanderlaan, M., and Blank, G.S. 2001. Industrial purification of pharmaceutical antibodies: development, operation, and validation of chromatography processes. Biotechnol. Genet. Eng. Rev. 18:301‐327.
   Feldhaus, M.J., Siegel, R.W., Opresko, L.K., Coleman, J.R., Feldhaus, J.M., Yeung, Y.A., Cochran, J.R., Heinzelman, P., Colby, D., Swers, J., Graff, C., Wiley, H.S., and Wittrup, K.D. 2003. Flow‐cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat. Biotechnol. 21:163‐170.
   Gavilondo, J.V. and Larrick, J.W. 2000. Antibody engineering at the millenium. BioTechniques 29:128‐145.
   Ghetie, V., Popov, S., Borvak, J., Radu, C., Matesoi, D., Medesan, C., Ober, R.J., and Ward, E.S. 1997. Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat. Biotechnol. 15:637‐640.
   Ghose, A.K., Viswanadhan, V.N., and Wendoloski, J.J.. 2001. The fundamentals of pharmacophore modeling in combinatorial chemistry. J. Recept. Signal. Transfuct. Res. 21:357‐75.
   Glennie, M.J. and van de Winkel, J.G. 2003. Renaissance of cancer therapeutic antibodies. Drug Discov. Today 8:503‐10.
   Green, L.L. 1999. Antibody engineering via genetic engineering of the mouse: XeonMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J. Immunol. Methods 231:11‐23.
   Griffiths, A.D. and Tawfik, D.S. 2003. Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. Embo J. 22:24‐35.
   Griffiths, A.D. and Tawfik, D.S. 2000. Man‐made enzymes–from design to in vitro compartmentalization. Curr. Opin. Biotechnol. 11:338‐353.
   Hanes, J., Schaffitzel, C., Knappik, A., and Pluckthun, A. 2000. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18:1287‐1292.
   Hecker, E.A., Duraiswami, C., Andrea, T.A., and Diller, D.J. 2002. Use of catalyst pharmacophore models for screening of large combinatorial libraries. J. Chem. Inf. Comput. Sci. 42:1204‐1211.
   Hoogenboom, H.R. and Chames, P. 2000. Natural and designer binding sites made by phage display technology. Immunol. Today 21:371‐378.
   Hong, G., Chappey, O., Neil, E., and Scherrmann, J.M. 2000. Enhanced cellular uptake and transport of polyclonal immunoglobulin G and fab after their cationization. J. Drug Target 8:67‐77.
   Houdebine, L.M. 2002. Antibody manufacture in transgenic animals and comparisons with other systems. Curr. Opin. Biotechnol. 13:625‐629.
   Humphreys, D.P. and Glover, D.J. 2001. Therapeutic antibody production technologies: Molecules, applications, expression and purification. Curr. Opin. Drug Discov. Devel. 4:172‐185.
   Jeffris R., Lund J., and Pound J.D., 1998. IgG‐Fc‐mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol. Rev. 163:59‐76
   Jenkins, J.L., Kao, R.Y., and Shapiro, R. 2003. Virtual screening to enrich hit lists from high‐throughput screening: a case study on small‐molecule inhibitors of antiogenin. Proteins 50:81‐93.
   Jespers, L.S., Roberts, A., Mahler, S.M., Winter, G., and Hoogenboom, H.R. 1994. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology 12:899‐903.
   Jiang, Y., and Lee, C.S. 2001 On‐line coupling of hollow fiber membranes with electrospray ionization mass spectrometry for continuous affinity selection, concentration and identification of small‐molecule libraries. J. of Mass Spectrometry 36:664‐669.
   Kabouridis, P.S., Hasan, M., Newson, J., Gilroy, D.W., and Lawrence, T. 2002. Inhibition of NF‐kappa B activity by a membrane‐transducting mutant of I kappa B alpha. J. Immunol. 169:2587‐2593.
   Kim, J.K., Firan, M., Radu, C.G., Kim, C.H., Ghetie, V., and Ward, E.S. 1999. Mapping the site on human IgG for binding of the MHC class 1‐related receptor, FcRn. Eur. J. Immunol. 29:2819‐2825.
   Klabunde, T. and Hessler, G. 2002. Drug design strategies for targeting G‐protein‐coupled receptors. Chemobiochem. 3:928‐944.
   Kobayashi, N., Shibahara, K., Ikegashira, K., Shibusawa, K., Goto, J. 2002. Single‐chain Fv fragments derived from an anti‐11‐deoxycortisol antibody. Affinity, specificity, and idiotype analysis. Steroids 67:733‐742.
   Köhler, G. and Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495‐497.
   Krebs, B., Rauchenberger, R., Reiffert, S., Rothe, C., Tesar, M., Thomassen, E., Cao, M., Dreier, T., Fischer, D., Hoss, A., Inge, L., Knappik, A., Marget, M., Pack, P., Meng, X.Q., Schier, R., Sohlemann, P., Winter, J., Wolle, J., and Kretzschmar, T. 2001. High‐throughput generation and engineering of recombinant human antibodies. J. Immunol. Methods 254:67‐84.
   Kretzschmar, T. and von Ruden, T. 2002. Antibody discovery: phage display. Curr. Opin. Biotechnol. 13:598‐602.
   Langer, R. 2001. Drug delivery. Drugs on target. Science 293:58‐59.
   Lee, M.H. and Kwak, J.W. 2003. Expression and functional reconsstitution of a recombinant antibody (Fab') specific for human apolipoprotein B‐100. J. Biotechnol. 101:189‐198.
   Manches, O., Lui, G., Chaperot, L., Gressin, R., Molens, J., Jacob, M., Sotto, J., Leroux, D., Bensa, J., Plumas, J. 2003. In vitro mechanisms of action of rituximab on primary non‐Hodgkin lymphomas. Blood 101:949‐954.
   Marasco, W.A. Intrabodies as antiviral agents. 2001. Curr. Top. Microbiol. Immunol. 260:247‐270.
   Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and Winter, G. 1991. By‐passing immunization. Human antibodies from V‐gene libraries displayed on phage. J. Mol. Biol. 222:581‐97.
   Mattheakis, L.C., Bhatt, R.R., and Dower, W.J. 1994. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. U.S.A. 91:9022‐9026.
   McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J. 1990. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552‐554.
   Medesan, C., Matesoi, D., Radu, C., Ghetie, V., and Ward, E.S. 1997. Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1. J. Immunol. 158:2211‐2217.
   Mendez, M.J., Green, L.L., Corvalan, J.R., Jia, X.C., Maynard‐Currie, C.E., Yang, X.D., Gallo, M.L., Louie, D.M., Lee, D.V., Erickson, K.L., Luna, J., Roy, C.M., Abderrahim, H., Kirschenbaum, F., Noguchi, M., Smith, D.H., Fukushima, A., Hales, J.F., Klapholz, S., Finer, M.H., Davis, C.G., Zsebo, K.M., and Jakobovits, A. 1997. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat. Genet. 15:146‐156.
   Miescher, S., Zahan‐Zabal, M., DeJesus, M., Moudry, R., Fisch, I., Vogel, M., Kobr, M., Imboden, M.A., Kragten, E., Bichler, J., Mermod, N., Stadler, B.M., Amstutz, H., and Wurm, F. 2000. CHO expression of a novel human recombinant igG1 anti‐RhD antibody isolated by phage display. Br. J. Haematol. 111:157‐166.
   Morrison, S.L., Johnson, M.J., Herzenberg, LA., and Oi, V.T. 1984. Chimeric human antibody molecules: Mouse antigen‐binding domains with human constant region domains. Proc. Natl. Acad. Sci. U.S.A. 81:6851‐6855.
   O'Connell, D., Becerril, B., Roy‐Burman, A., Dawas, M., and Marks, J.D. 2002. Phage versus phagemid libraries for generation of human monoclonal antibodies. J. Mol. Biol. 321:49‐56.
   Orlandi, R., Gussow, D.H., Jones, P.T. and Winter, G. 1989. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Natl. Acad. Sci. U.S.A. 86:3833‐3837.
   Paul, W.E. (ed.) 1999. Fundamental Immunology, 4th ed. Lippincott‐Raven, New York.
   Prossnitz ER. 2004 Novel roles for arrestins in the post‐endocytic trafficking of G protein‐coupled receptors. Life Sci. 75:893‐899.
   Reichert, J.M. 2001. Monoclonal antibodies in the clinic. Nat. Biotechnol. 19:819‐822.
   Riechmann, L., Clark, M., Waldmann, H., and Winter, G. 1988. Reshaping human antibodies for therapy. Nature 332:323‐327.
   Roberts, R.W. and Szostak, J.W., 1997. RNA‐peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. U.S.A. 94:12297‐12302.
   Roguska, M.A., Pedersen, J.T., Keddy, C.A., Henry, A.H., Searle, S.J., Lambert, J.M., Goldmacher, V.S., Blattler, W.A., Rees, A.R., and Guild, B.C. 1994. Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc. Natl. Acad. Sci. U.S.A. 91:969‐973.
   Sanna, P.P. 2002. Expression of antibody Fab fragments and whole immunoglobulin in mammalian cells. Methods Mol. Biol. 178:389‐395.
   Sblattero, D. and Bradbury, A. 1998. A definitive set of oligonucleotide primers for amplifying human V regions. Immunotechnology 3:271‐278.
   Schellekens, H. 2002. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat. Rev. Drug Discov. 1:457‐462.
   Shields, R.L, Namenuk, A.K, Hong, K., Meng, Y.G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J.A., and Presta, L.G. 2001. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J. Biol. Chem. 276:6591‐6604.
   Shuker, S.B., Hajduk, P.J., Meadows, R.P., and Fesik, S.W. 1996. Discovering high‐affinity ligands for proteins: SAR by NMR. Science 274:1531‐1534.
   Skerra, A. and Pluckthun, A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240:1038‐1041.
   Smith, G.P. 1985. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315‐137.
   Smith, K.G., Austyn, J.M., Hariri, G., Beverley, P.C., and Morris, P.J. 1986. T cell activation by anti‐T3 antibodies: comparison of IgG1 and IgG2b switch variants and direct evidence for accessory function of macrophage Fc receptors. Eur. J. Immunol. 16:478‐486.
   Stephens, S., Emtage, S., Vetterlein, O., Chaplin, L., Bebbington, C., Nesbitt, A., Sopwith, M., Athwal, D., Novak, C., and Bodmer, M. 1995. Comprehensive pharmacokinetics of a humanized antibody and analysis of residual anti‐idiotypic responses. Immunology 85:668‐674.
   Stoger, E., Sack, M., Fischer, R., and Christou, P. 2002. Planatibodies: applications, advantages and bottlenecks. Curr. Opin. Biotechnol. 13:161‐166.
   Tan, P., Mitchell, D.A., Buss, T.N., Holmes, M.A., Anasetti, C., and Foote, J. 2002. “Superhumanized” antibodies: Reduction of immunogenic potential by complementarity‐determining region grafting with human germline sequences: application to an anti‐CD28. J. Immunol. 169:1119‐1125.
   Taylor, L.D., Carmack, C.E.., Schramm, S.R., Mashayekh, R., Higgins, K.M., Kuo, C.C., Woodhouse, C., Kay, R.M., and Lonberg, N. 1992. A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins. Nucleic Acids Res. 20:6287‐6295.
   Uhlmann, E. and Vollmer, J. 2003. Recent advances in the development of immunostimulatory oligonucleotides. Curr. Opin. Drug Disc. & Devel. 6:204‐217.
   Van De Waterbeemd, H. and Gifford, E. 2003. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug. Discov. 2:192‐204.
   Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C, McCafferty, J., Hodits, R.A., Wilton, J., and Johnson, K.S. 1996. Human antibodies with sub‐nanomolar affinities isolated from a large non‐immunized phage display library. Nat. Biotechnol. 14:309‐314.
   Vogtherr, M. and Fiebig, K. 2003. NMR‐based screening methods for lead discovery. Exper. Suppl. 93:183‐202.
   Winkler, D.A. 2002. The role of quantitative structure–activity relaltionships (QSAR) in biomolecular discovery. Brief Bioinform. 3:73‐86.
   Wittrup, K.D. 2001. Protein engineering by cell‐surface display. Curr. Opin. Biotechnol. 12:395‐399.
   Woodle, E.S., Xu, D., Zivin, R.A., Auger, J., Charette, J., O'Laughlin, R., Peace, D., Jolliffe, L.K., Haverty, T., Bluestone, J.A., and Thistlethwaite, J.R. Jr. 1999. Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3gamma1 (Ala‐Ala) in the treatment of acute renal allograft rejection. Transplantation 68:608‐616.
   Woodle, E.S., Thistlethwaite, J.R., Ghobrial, I.A., Jolliffe, L.K., Stuart, F.P., and Bluestone, J.A. 1991a. OKT3 F(ab')2 fragments–retention of the immunosuppressive properties of whole antibody with marked reduction in T cell activation and lymphokine release. Transplantation 52:354‐360.
   Woodle, E.S., Thistlethwaite, J.R. Jr., Jolliffe, L.K., Fucello, A.J., Stuart, F.P., and Bluestone, J.A. 1991b. Anti‐CD3 monoclonal antibody therapy: An approach toward optimization by in vitro analysis of new anti‐CD3 antibodies. Transplantation 52:361‐368.
   Xu, L., Aha, P., Gu, K., Kuimelis, R.G., Kurz, M., Lam, T., Lim, A.C., Liu, H., Lohse, P.A., Sun, L., Weng, S, Wagner, R.W., and Lipovsek, D. 2002. Directed evolution of high‐affinity antibody mimics using mRNA display. Chem. Biol. 9:933‐942.
   Yoo, E.M., Chintalacharuvu, K.R., Penichet, M.L, and Morrison, S.L. 2002. Myeloma expression systems. J. Immunol. Methods 261:1‐20.
   Zhao, Y., Lou, D., Burkett, J., and Kohler, H. 2001. Chemical engineering of cell penetrating antibodies. J. Immunol. Methods 254:137‐145.
Internet Resources
   http://www.uspto.gov/main/patents.htm
  U.S. Government patent office Web site.
   http://ep.espacenet.com/
  European patent office Web site.
   http://www.abgenix.com
  Abgenix Web site. Developer of human antibody transgenic mice.
   http://www.medarex.com
  Medarex Web site. Developer of human antibody transgenic mice.
   http://www.tcmouse.com
  Kirin Web site. Developer of human antibody transgenic mice.
   http://www.cambridgeantibody.com
  Cambridge Antibody Technology Web site. Developer of antibody therapeutics using phage display technology.
   http://www.domantis.com
  Domantis Web site. Developer of antibody therapeutics using phage display technology.
   http://www.morphosys.com
  Morphosys AG Web site. Developer of antibody therapeutics using phage display technology.
   http://www.dyax.com
  Dyax Web site. Developer of antibody therapeutics using phage display technology.
   http://www.biosite.com
  Biosite Web site. Developer of antibody therapeutics using phage display technology.
   http://www.biovation.com
  Biovation Web site; technology provider.
   http://www.epimmune.com
  Epimmune Web site; technology provider.
   http://www.genencor.com
  Genencor Web site; technology provider.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library