Overview of Critical Parameters for the Design and Execution of a High‐Throughput Screen for Allosteric Ligands

Andrew Alt1

1 Leads Discovery and Optimization, Bristol‐Myers Squibb, Wallingford, Connecticut
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 9.20
DOI:  10.1002/cpph.12
Online Posting Date:  September, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Allosteric ligands modulate the activity of receptor targets by binding to sites that are distinct from the orthosteric (native agonist) binding site. Allosteric modulators have potential therapeutic advantages over orthosteric agonists and antagonists, including improved selectivity, and maintenance of the spatial and temporal fidelity of native signaling patterns. The identification of allosteric ligands presents unique challenges because of the requirement for screening in the presence of an orthosteric agonist, the small signal window that is produced by many allosteric modulators, the proclivity of allosteric modulators to exhibit activity switching within a chemotype (e.g., one compound may be a positive allosteric modulator while a close analog is a negative allosteric modulator), and probe dependence (differential interactions with different orthosteric agonists). Described in this unit are emerging strategies for the identification of allosteric ligands by high‐throughput screening (HTS), including the use of multiple‐add/multiple‐read HTS assays and tool molecule‐based screening formats. © 2016 by John Wiley & Sons, Inc.

Keywords: cooperativity; Ca2+ flux; HTS; modulators; NAL; NAM; PAM; SAM

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Challenges in Screening for Allosteric Modulators
  • Choice of HTS Assay Format
  • Multiple‐Add/Multiple‐Read Dynamic HTS Assays
  • Choice of Orthosteric Agonist Concentration
  • Tool Molecule‐Based Screening Approaches
  • Other Considerations
  • Follow up HIT Assessment
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Arey, B.J. 2014. Biased Signaling in Physiology, Pharmacology, and Therapeutics. Elsevier, Waltham, Mass.
  Arunlakshana, O. and Schild, H.O. 1959. Some quantitative uses of drug antagonists. Br. J. Pharmacol. 14:48‐58. doi: 10.1111/j.1476‐5381.1997.tb06793.x.
  Bertekap, R.L. Jr., Burford, N.T., Li, Z., and Alt, A. 2015. High‐throughput screening for allosteric modulators of GPCRs. In G Protein‐Coupled Receptors in Drug Discovery, Second Edition. (M. Filizola, ed.) pp. 223‐240. Springer, New York. doi: 10.1007/978‐1‐4939‐2914‐6_15.
  Bertrand, D. and Gopalakrishnan, M. 2007. Allosteric modulation of nicotinic acetylcholine receptors. Biochem. Pharmacol. 74:1155‐1163. doi: 10.1016/j.bcp.2007.07.011.
  Bridges, T.M., Rook, J.M., Noetzel, M.J., Morrison, R.D., Zhou, Y., Gogliotti, R.D., Vinson, P.N., Jones, C.K., Niswender, C.M., Lindsley, C.W., Stauffer, S.R., Conn, P.J., and Daniels, J.S. 2013. Biotransformation of a novel positive allosteric modulator of metabotropic glutamate receptor subtype 5 contributes to seizure‐like adverse events in rats involving a receptor agonism‐dependent mechanism. Drug Metab. Dispos. 41:1703‐1714. doi: 10.1124/dmd.113.052084.
  Burford, N.T., Watson, J., Bertekap, R., and Alt, A. 2011. Strategies for the identification of allosteric modulators of G‐protein‐coupled receptors. Biochem. Pharmacol. 81:691‐702. doi: 10.1016/j.bcp.2010.12.012.
  Burford, N.T., Clark, M.J., Wehrman, T.S., Gerritz, S.W., Banks, M., O'Connell, J., Traynor, J.R., and Alt, A. 2013. Discovery of positive allosteric modulators and silent allosteric modulators of the µ‐opioid receptor. Proc. Natl. Acad. Sci. U.S.A. 110:10830‐10835. doi: 10.1073/pnas.1300393110.
  Burford, N.T., Wehrman, T., Bassoni, D., O'Connell, J., Banks, M., Zhang, L., and Alt, A. 2014. Identification of selective agonists and positive allosteric modulators for µ‐ and δ‐opioid receptors from a single high‐throughput screen. J. Biomol. Screen. 19:1255‐1265. doi: 10.1177/1087057114542975.
  Burford, N.T., Traynor, J.R., and Alt, A. 2015a. Positive allosteric modulators of the μ‐opioid receptor: A novel approach for future pain medications. Br. J. Pharmacol. 172: 277‐286. doi: 10.1111/bph.12599.
  Burford, N.T., Livingston, K.E., Canals, M., Ryan, M.R., Budenholzer, L.M.L., Han, Y., Shang, Y., Herbst, J.J., O'Connell, J., Banks, M., Zhang, L., Filizola, M., Bassoni, D.L., Wehrman, T.S., Christopoulos, A., Traynor, J.R., Gerritz, S.W., and Alt, A. 2015b. Discovery, synthesis, and molecular pharmacology of selective positive allosteric modulators of the δ‐opioid receptor. J. Med. Chem. 58:4220‐4229. doi: 10.1021/acs.jmedchem.5b00007.
  Chen, Y., Goudet, C., Pin, J.P., and Conn, J. 2008. N‐{4‐Chloro‐2‐[(1,3‐dioxo‐1,3‐dihydro‐2H‐isoindol‐2‐yl)methyl]phenyl}‐2‐hydroxybenzamide (CPPHA) acts through a novel site as a positive allosteric modulator of group 1 metabotropic glutamate receptors. Mol. Pharmacol. 73:909‐918. doi: 10.1124/mol.107.040097.
  Cheng, Y. and Prusoff, W.H. 1973. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of an enzymatic reaction. Biochem. Pharmacol. 23:3099‐3108. doi: 10.1016/0006‐2952(73)90196‐2.
  Cho, H.P., Engers, D.W., Venable, D.F., Niswender, C.M., Lindsley, C.W., Conn, P.J., Emmitte, K.A., and Rodriguez, A.L. 2014. A novel class of succinimide‐derived negative allosteric modulators of metabotropic glutamate receptor subtype 1 provide insight into a disconnect in activity between the rat and human receptors. ACS Chem. Neurosci. 5:597‐610. doi: 10.1021/cn5000343.
  Christopoulos, A. and Kenakin, T. 2002. G protein‐coupled receptor allosterism and complexing. Pharmacol. Rev. 54:323‐374. doi: 10.1124/pr.54.2.323.
  Conde‐Ceide, S., Martinez‐Viturro, C.M., Alcázar, J., Garcia‐Barrantes, P.M., Lavreysen, H., Mackie, C., Vinson, P.N., Rook, J.M., Bridges, T.M., Daniels, J.S., Megens, A., Langlois, X., Drinkenburg, W.H., Ahnaou, A., Niswender, C.M., Jones, C.K., Macdonald, G.J., Steckler, T., Conn, P.J., Stauffer, S.R., Bartolomé‐Nebreda, J.M., and Lindsley, C.W. 2015. Discovery of VU0409551/JNJ‐46778212: An mGlu5 positive allosteric modulator clinical candidate targeting schizophrenia. ACS Med. Chem. Lett. 6:716‐720. doi: 10.1021/acsmedchemlett.5b00181.
  Croy, C.H., Schober, D.A., Xiao, H., Quets, A., Christopoulos, A., and Felder, C.C. 2014. Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M2 and M4 receptors. Mol. Pharmacol. 86:106‐115. doi: 10.1124/mol.114.091751.
  Davey, A.E., Leach, K., Valant, C., Conigrave, A.D., Sexton, P.M., and Christopoulos, A. 2012. Positive and negative allosteric modulators promote biased signaling at the calcium‐sensing receptor. Endocrinology 153:1232‐1241. doi: 10.1210/en.2011‐1426.
  Ehlert, F.J. 2005. Analysis of allosterism in functional assays. J. Pharmacol. Exp. Ther. 315:740‐754. doi: 10.1124/jpet.105.090886.
  Gilchrist, M.A. II, Cacace, A., and Harden, D.G. 2008. Characterization of the 5‐HT2b receptor in evaluation of aequorin detection of calcium mobilization for miniaturized GPCR high‐throughput screening. J. Biomol. Screen. 13:486‐493. doi: 10.1177/1087057108319212.
  Gregory, K.J., Sexton, P.M., and Christopoulos, A. 2010. Overview of receptor allosterism. Curr. Protoc. Pharmacol. 51:1.21.1‐1.21.34. doi: 10.1002/0471141755.ph0121s51.
  Gregory, K.J., Herman, E.J., Ramsey, A.J., Hammond, A.S., Byun, N.E., Stauffer, S.R., Manka, J.T., Jadhav, S., Bridges, T.M., Weaver, C.D., Niswender, C.M., Steckler, T., Drinkenburg, W.H., Ahnaou, A., Lavreysen, H., Macdonald, G.J., Bartolomé, J.M., Mackie, C., Hrupka, B.J., Caron, M.G., Daigle, T.L., Lindsley, C.W., Conn, P.J., and Jones, C.K. 2013. N‐aryl piperazine metabotropic glutamate receptor 5 positive allosteric modulators possess efficacy in preclinical models of NMDA hypofunction and cognitive enhancement. J. Pharmacol. Exp. Ther. 347:438‐457. doi: 10.1124/jpet.113.206623.
  Hughes, J.P., Rees, S., Kalindjian, S.B., and Philpott, K.L. 2011. Principles of early drug discovery. Br. J. Pharmacol. 162:1239‐1249. doi: 10.1111/j.1476‐5381.2010.01127.x.
  Jacoby, E., Bouhelal, R., Gerspacher, M., and Seuwen, K. 2006. The G‐protein‐coupled receptor target family. ChemMedChem 1:761‐782. doi: 10.1002/cmdc.200600134.
  Jakubik, J., Bacakova, L., El‐Fakahany, E.E., and Tucek, S. 1997. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol. Pharmacol. 52:172‐179. doi: 10.1124/mol.52.1.172.
  Kenakin, T. 2004. Receptor theory in pharmacology. Trends Pharmacol. Sci. 25:186‐192. doi: 10.1016/j.tips.2004.02.012.
  Kenakin, T. 2005. New concepts in drug discovery collateral efficacy and permissive antagonism. Nat. Rev. Drug Discov. 4:919‐927. doi: 10.1038/nrd1875.
  Kenakin, T. 2010. Ligand detection in the allosteric world. J. Biomol. Screen. 15:119‐130. doi: 10.1177/1087057109357789.
  Kenakin, T. and Christopoulos, A. 2013. Signalling bias in new drug discovery: Detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 12:205‐216. doi: 10.1038/nrd3954.
  Kenakin, T. and Miller, L.J. 2010. Seven transmembrane receptors as shapeshifting proteins: The impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev. 62:265‐304. doi: 10.1124/pr.108.000992.
  Keov, P., Sexton, P.M., and Christopoulos, A. 2011. Allosteric modulation of G protein‐coupled receptors: A pharmacological perspective. Neuropharmacology 60:24‐35. doi: 10.1016/j.neuropharm.2010.07.010.
  Koole, C., Wootten, D., Simms, J., Valant, C., Sridhar, R., Woodman, O.L., Miller, L.J., Summers, R.J., Christopoulos, A., and Sexton, P.M. 2010. Allosteric ligands of the glucagon‐like peptide receptor (GLP‐1R) differentially modulate endogenous and exogenous peptide responses in a pathway‐selective manner: Implications for drug screening. Mol. Pharmacol. 78:456‐465. doi: 10.1124/mol.110.065664.
  Kostenis, E., Waelbroeck, M., and Milligan, G. 2005. Techniques: Promiscuous Gα proteins in basic research and drug discovery. Trends Pharmacol. Sci. 26:595‐602. doi: 10.1016/j.tips.2005.09.007.
  Leach, K., Sexton, P.M., and Christopoulos, A. 2007. Allosteric GPCR modulators: Taking advantage of permissive receptor pharmacology. Trends Pharmacol. Sci. 28:382‐389. doi: 10.1016/j.tips.2007.06.004.
  Leff, P. and Dougall, I.G. 1993. Further concerns over Cheng‐Prusoff analysis. Trends Pharmacol. Sci. 14:110‐112. doi: 10.1016/0165‐6147(93)90080‐4.
  Lewis, M.A., Hunihan, L., Watson, J., Gentles, R.G., Hu, S., Huang, Y., Bronson, J., Macor, J.E., Beno, B.R., Ferrante, M., Hendricson, A., Knox, R.J., Molski, T.F., Kong, Y., Cvijic, M.E., Rockwell, K.L., Weed, M.R., Cacace, A.M., Westphal, R.S., Alt, A., and Brown, J.M. 2015. Discovery of D1 dopamine receptor positive allosteric modulators: Characterization of pharmacology and identification of residues that regulate species selectivity. J. Pharmacol. Exp. Ther. 354:340‐349. doi: 10.1124/jpet.115.224071.
  Lindsley, C.W., Emmitte, K.A., Hopkins, C.R., Bridges, T.M., Gregory, K.J., Niswender, C.M., and Conn, P.J. 2016. Practical strategies and concepts in GPCR allosteric modulator discovery: Recent advances with metabotropic glutamate receptors. Chem. Rev. 116:6707‐6741. doi:10.1021/acs.chemrev.5b00656.
  Macarron, R., Banks, M.N., Bojanic, D., Burns, D.J., Cirovic, D.A., Garyantes, T., Green, D.V.S., Hertzberg, R.P., Janzen, W.P., Paslay, J.W., Schopfer, U., and Sittampalam, S. 2011. Impact of high‐throughput screening in biomedical research. Nat. Rev. Drug Discov. 10:188‐195. doi: 10.1038/nrd3368.
  Macarrón, R. and Hertzberg, R.P. 2011. Design and implementation of high throughput screening assays. Mol. Biotechnol. 47:270‐285. doi: 10.1007/s12033‐010‐9335‐9.
  Melancon, B.J., Tarr, J.C., Panarese, J.D., Wood, M.R., and Lindsley, C.W. 2013. Allosteric modulation of the M1 muscarinic acetylcholine receptor: improving cognition and a potential treatment for schizophrenia and Alzheimer's disease. Drug Discov. Today 18:1185‐1199. doi: 10.1016/j.drudis.2013.09.005.
  Möhler, H., Fritschy, J.M., and Rudolph, U. 2002. A new benzodiazepine pharmacology. J. Pharmacol. Exp. Ther. 300:2‐8. doi: 10.1124/jpet.300.1.2.
  Neubig, R.R., Spedding, M., Kenakin, T., and Christopolous, A. 2003. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol. Rev. 55:597‐606. doi: 10.1124/pr.55.4.4.
  Nickols, H.H. and Conn, P.J. 2014. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol. Dis. 61:55‐71. doi: 10.1016/j.nbd.2013.09.013.
  Noblin, D.J., Bertekap, R.L. Jr., Burford, N.T., Hendricson, A., Zhang, L., Knox, R., Banks, M., O'Connell, J., and Alt, A. 2012. Development of a high‐throughput calcium flux assay for identification of all ligand types including positive, negative, and silent allosteric modulators for G protein‐coupled receptors. Assay Drug Dev. Technol. 10:457‐467. doi: 10.1089/adt.2011.443.
  Noetzl, N.J., Rook, J.M., Vinson, P.N., Cho, H.P., Days, E., Zhou, Y., Rodriguez, A.L., Lavreyson, H., Stauffer, S.R., Niswender, C.M., Xiang, Z., Daniels, J.S., Jones, C.K., Lindsley, C.W., Weaver, C.D., and Conn, P.J. 2012. Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function. Mol. Pharmacol. 81:120‐133. doi: 10.1124/mol.111.075184.
  Parmentier‐Batteur, S., Hutson, P.H., Menzel, K., Uslaner, J.M., Mattson, B.A., O'Brien, J.A., Magliaro, B.C., Forest, T., Stump, C.A., Tynebor, R.M., Anthony, N.J., Tucker, T.J., Zhang, X.F., Gomez, R., Huszar, S.L., Lambeng, N., Fauré, H., Le Poul, E., Poli, S., Rosahl, T.W., Rocher, J.P., Hargreaves, R., and Williams, T.M. 2014. Mechanism based neurotoxicity of mGluR5 positive allosteric modulators–Development challenges for a promising novel antipsychotic target. Neuropharmacology 82:161‐173. doi: 10.1016/j.neuropharm.2012.12.003.
  Price, M.R., Baillie, G.L., Thomas, A., Stevenson, L.A., Easson, M., Goodwin, R., McLean, A., McIntosh, L., Goodwin, G., Walker, G., Westwood, P., Marrs, J., Thomson, F., Cowley, P., Christopoulos, A., Pertwee, R.G., and Ross, R.A. 2005. Allosteric modulation of the cannabinoid CB1 receptor. Mol. Pharmacol. 68:1484‐1495. doi: 10.1124/mol.105.016162.
  Proska, J. and Tucek, S. 1994. Mechanisms of steric and cooperative actions of alcuronium on cardiac muscarinic acetylcholine receptors. Mol. Pharmacol. 45:709‐717.
  Rodriguez, A.L., Grier, M.D., Jones, C.K., Herman, E.J., Kane, A.S., Smith, R.L., Williams, R., Zhou, Y., Marlo, J.E., Days, E.L., Blatt, T.N., Jadhav, S., Menon, U.N., Vinson, P.N., Rook, J.M., Stauffer, S.R., Niswender, C.M., Lindsley, C.W., Weaver, C.D., and Conn, P.J. 2010. Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity. Mol. Pharmacol. 78:1105‐1123. doi: 10.1124/mol.110.067207.
  Rook, J.M., Noetzel, M.J., Pouliot, W.A., Bridges, T.M., Vinson, P.N., Cho, H.P., Zhou, Y., Gogliotti, R.D., Manka, R.T., Gregory, K.J., Stauffer, S.R., Dudek, F.E., Xiang, Z., Niswender, C.M., Daniels, J.S., Jones, C.K., Lindsley, C.W., and Conn, P.J. 2013. Unique signaling profiles of positive allosteric modulators of metabotropic glutamate receptor subtype 5 determine differences in in vivo activity. Biol. Psychiatry 73:501‐509. doi: 10.1016/j.biopsych.2012.09.012.
  Schwartz, T.W. and Holst, B. 2006. Ago‐allosteric modulation and other types of allostery in dimeric 7TM receptors. J. Recept. Signal Transduct. Res. 26:107‐128. doi: 10.1080/10799890600567570.
  Schwartz, T.W. and Holst, B. 2007. Allosteric enhancers, allosteric agonists and ago‐allosteric modulators: Where do they bind and how do they act? Trends Pharmacol. Sci. 28:366‐373. doi: 10.1016/j.tips.2007.06.008.
  Sharma, S., Rodriguez, A.L., Conn, P.J., and Lindsley, C.W. 2008. Synthesis and SAR of a mGluR5 allosteric partial agonist lead: Unexpected modulation of pharmacology with slight structural modifications to a 5‐(phenylethynyl)pyrimidine scaffold. Bioor. Med. Chem. Lett. 18:4098‐4101. doi: 10.1016/j.bmcl.2008.05.091.
  Smith, E., Chase, P., Niswender, C.M., Utley, T.J., Sheffler, D.J., Noetzel, M.J., Lamsal, A., Wood, M.R., Conn, P.J., Lindsley, C.W., Madoux, F., Acosta, M., Scampavia, L., Spicer, T., and Hodder, P. 2015. Application of parallel multiparametric cell‐based FIPR detection assays for the identification of modulators of the muscarinic acetylcholine receptor 4 (M4). J. Biomol. Screen. 20:858‐868. doi: 10.1177/1087057115581770.
  Thomsen, W., Frazer, J., and Unett, D. 2005. Functional assays for screening GPCR targets. Curr. Opin. Biotechnol. 16:655‐665. doi 10.1016/j.copbio.2005.10.008.
  Valant, C., Felder, C.C., Sexton, P.M., and Christopoulos, A. 2012. Probe dependence in the allosteric modulation of a G protein‐coupled receptor: Implications for detection and validation of allosteric ligand effects. Mol. Pharmacol. 81:41‐52. doi: 10.1124/mol.111.074872.
  Violin, J.D., Crombie, A.L., Soergel, D.G., and Lark, M.W. 2014. Biased ligands at G‐protein‐coupled receptors: Promise and progress. Trends Pharmacol. Sci. 35:308‐316. doi: 10.1016/j.tips.2014.04.007.
  Wigglesworth, M.J., Murray, D.C., Blackett, C.J., Kossenjans, M., and Nissink, J.W.M. 2015. Increasing the delivery of next generation therapeutics from high throughput screening libraries. Curr. Opin. Chem. Biol. 26:104‐110. doi: 10.1016/j.cbpa.2015.04.006.
  Wisler, J.W., Xiao, K., Thomsen, A.R.B., and Lefkowitz, R.J. 2014. Recent developments in biased agonism. Curr. Opin. Cell Biol. 27:18‐24. doi: 10.1016/j.ceb.2013.10.008.
  Wootten, D., Christopoulos, A., and Sexton, P.M. 2013. Emerging paradigms in GPCR allostery: Implications for drug discovery. Nat. Rev. Drug Discov. 12:630‐644. doi: 10.1038/nrd4052.
  Xiong, H., Brugel, T.A., Balestra, M., Brown, D.G., Brush, K.A., Hightower, C., Hinkley, L., Hoesch, V., Kang, J., Koether, G.M., McCauley, J.P. Jr., McLaren, F.M., Panko, L.M., Simpson, T.R., Smith, R.W., Woods, J.M., Brockel, B., Chhajlani, V., Gadient, R.A., Spear, N., Sygowski, L.A., Zhang, M., Arora, J., Breysse, N., Wilson, J.M., Isaac, M., Slassi, A., and King, M.M. 2010. 4‐aryl piperazine amides as novel mGluR5 positive allosteric modulators. Bioorg. Med. Chem. Lett. 20:7381‐7384. doi: 10.1016/j.bmcl.2010.10.036.
  Yang, F., Snyder, L.B., Balakrishnan, A., Brown, J.M., Sivarao, D.V., Easton, A., Fernandes, A., Gulianello, M., Hanumegowda, U.M., Huang, H., Huang, Y., Jones, K.M., Li, Y.W., Matchett, M., Mattson, G., Miller, R., Santone, K., Senapati, A., Shields, E.E., Simutis, F.J., Westphal, R., Whiterock, V.J., Bronson, J., Macor, J.E., and Degnan, A.P. 2016. Discovery and preclinical evaluation of BMS‐955829, a potent positive allosteric modulator of mGluR5. ACS Med. Chem. Lett. 7:289‐293. doi: 10.1021/acsmedchemlett.5b00450.
  Yu, R. and Hinkle, P.M. 1997. Desensitization of thyrotropin‐releasing hormone receptor‐mediated responses involves multiple steps. J. Biol. Chem. 272:28301‐28307. doi: 10.1074/jbc.272.45.28301.
  Zhang, J.H., Chung, T.D., and Oldenberg, K.R. 1999. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4:67‐73. doi: 10.1177/108705719900400206.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library