Overview of Electrophysiological Characterization of Neuronal Nicotinic Acetylcholine Receptors

Sonia Bertrand1, Daniel Bertrand1

1 Centre Médical Universitaire, Geneva, Switzerland
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 11.7
DOI:  10.1002/0471141755.ph1107s23
Online Posting Date:  February, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Electrophysiology is one of the best tools to characterize ligand‐gated channels such as neuronal nicotinic acetylcholine receptors. In this unit, the properties of these receptors are discussed along with approaches for how they can be characterized. Special emphasis is given to agonist and antagonist profiles as well as allosteric effectors that offer alternative possibilities in drug discovery.

Keywords: neuronal nicotinic acetylcholine receptors; ligand‐gated channels; electrophysiology; characterization; agonist; antagonist; allosteric modulation

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Drug Application Methods and Considerations
  • Voltage Clamp Versus Current Clamp
  • Receptor Activation
  • Inhibition
  • Ionic Selectivity
  • Desensitization
  • Allosteric Effectors
  • Upregulation
  • Receptors in Slices
  • Technical Conditions for Specific Systems
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Alkondon, M., Pereira, E.F., and Albuquerque, E.X. 1998. Alpha‐bungarotoxin‐ and methyllycaconitine‐sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices. Brain Res. 810:257–263.
   Bertrand, D., Bertrand, S., and Ballivet, M. 1992. Pharmacological properties of the homomeric alpha 7 receptor. Neurosci. Lett. 146:87–90.
   Bertrand, D., Cooper, E., Valera, S., Rungger, D., and Ballivet, M. 1991. Electrophysiology of neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes following nuclear injection of genes or cDNA. In Methods in Neuroscience, Vol. 4 (M. Conn, ed.) pp. 174–193. Academic Press, New York.
   Bertrand, D., Devillers‐Thiery, A., Revah, F., Galzi, J.L., Hussy, N., Mulle, C., Bertrand, S., Ballivet, M., and Changeux, J.P. 1992. Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc. Natl. Acad. Sci. U.S.A. 89:1261–1265.
   Bertrand, S., Devillers‐Thiery, A., Palma, E., Buisson, B., Edelstein, S.J., Corringer, P.J., Changeux, J.P., and Bertrand, D. 1997. Paradoxical allosteric effects of competitive inhibitors on neuronal alpha7 nicotinic receptor mutants. Neuroreport 8:3591–3596.
   Bertrand, S., Weiland, S., Berkovic, S.F., Steinlein, O.K., and Bertrand, D. 1998. Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy. Br. J. Pharmacol. 125:751–760.
   Briggs, C.A. and McKenna, D.G. 1998. Activation and inhibition of the human alpha7 nicotinic acetylcholine receptor by agonists. Neuropharmacol. 37:1095–1102.
   Buisson, B. and Bertrand, D. 1998. Open‐channel blockers at the human alpha4beta2 neuronal nicotinic acetylcholine receptor. Mol. Pharmacol. 53:555–563.
   Buisson, B. and Bertrand, D. 2001. Chronic exposure to nicotine upregulates the human alpha4beta2 nicotinic acetylcholine receptor function. J. Neurosci. 21:1819–1829.
   Buisson, B., Gopalakrishnan, M., Arneric, S.P., Sullivan, J.P., and Bertrand, D. 1996. Human alpha4beta2 neuronal nicotinic acetylcholine receptor in HEK 293 cells: A patch‐clamp study. J. Neurosci. 16:7880–7891.
   Chiodini, F., Charpantier, E., Muller, D., Tassonyi, E., Fuchs‐Buder, T., and Bertrand, D. 2001. Blockade and activation of the human neuronal nicotinic acetylcholine receptors by atracurium and laudanosine. Anesthesiology 94:643–651.
   Corringer, P.J., Bertrand, S., Bohler, S., Edelstein, S.J., Changeux, J.P., and Bertrand, D. 1998. Critical elements determining diversity in agonist binding and desensitization of neuronal nicotinic acetylcholine receptors. J. Neurosci. 18:648–657.
   Covernton, P.J. and Connolly, J.G. 2000. Multiple components in the agonist concentration‐response relationships of neuronal nicotinic acetylcholine receptors. J. Neurosci. Methods 96:63–70.
   Curtis, L., Buisson, B., Bertrand, S., and Bertrand, D. 2002. Potentiation of human alpha4beta2 neuronal nicotinic acetylcholine receptor by estradiol. Mol. Pharmacol. 61:127–135.
   Dani, J. A., Radcliffe, K. A. and Pidoplichko, V. I. 2000. Variations in desensitization of nicotinic acetylcholine receptors from hippocampus and midbrain dopamine areas. Eur. J. Pharmacol. 393:31–38.
   Edwards, F.A., Konnerth, A., Sakmann, B., and Takahashi, T. 1989. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 414:600–612.
   Elgoyhen, A.B., Johnson, D.S., Boulter, J., Vetter, D.E., and Heinemann, S. 1994. Alpha 9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715.
   Elgoyhen, A.B., Vetter, D.E., Katz, E., Rothlin, C.V., Heinemann, S.F., and Boulter, J. 2001. Alpha10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc. Natl. Acad. Sci. U.S.A. 98:3501–3506.
   Fenster, C.P., Rains, M.F., Noerager, B., Quick, M.W. and Lester, R.A. 1997. Influence of subunit composition on desensitization of neuronal acetylcholine receptors at low concentrations of nicotine. J. Neurosci. 17:5747–5759.
   Fenster, C.P., Whitworth, T.L., Sheffield, E.B., Quick, M.W., and Lester, R.A. 1999. Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine. J. Neurosci. 19:4804–4814.
   Franke, C., Hatt, H., and Dudel, J. 1987. Liquid filament switch for ultra‐fast exchanges of solutions at excised patches of synaptic membrane of crayfish muscle. Neurosci. Lett. 77:199–204.
   Galzi, J.L., Bertrand, S., Corringer, P.J., Changeux, J.P., and Bertrand, D. 1996. Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. E.M.B.O.J. 15:5824–5832.
   Galzi, J.L., Devillers‐Thiery, A., Hussy, N., Bertrand, S., Changeux, J.P. and Bertrand, D. 1992. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359:500–505.
   Gopalakrishnan, M., Buisson, B., Touma, E., Giordano, T., Campbell, J. E., Hu, I.C., Donnelly‐Roberts, D., Arneric, S.P., Bertrand, D., and Sullivan, J.P. 1995. Stable expression and pharmacological properties of the human alpha 7 nicotinic acetylcholine receptor. Eur. J. Pharmacol. 290:237–246.
   Jia, L., Flotildes, K., Li, M. and Cohen, B. N. 2003. Nicotine trapping causes the persistent desensitization of alpha4beta2 nicotinic receptors expressed in oocytes. J. Neurochem. 84:753–766.
   Konnerth, A. 1990. Patch‐clamping in slices of mammalian CNS. Trends Neurosci. 13:321–323.
   Krause, R.M., Buisson, B., Bertrand, S., Corringer, P.J., Galzi, J.L., Changeux, J.P., and Bertrand, D. 1998. Ivermectin: A positive allosteric effector of the alpha7 neuronal nicotinic acetylcholine receptor. Mol. Pharmacol. 53:283–294.
   Marshall, C.G., Ogden, D., and Colquhoun, D. 1991. Activation of ion channels in the frog endplate by several analogues of acetylcholine. J. Physiol. 433:73–93.
   Mayer, M.L. and Westbrook, G.L. 1987. Permeation and block of N‐methyl‐D‐aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J. Physiol. 394:501–527.
   Miledi, R., Parker, I., and Sumikawa, K. 1982. Properties of acetylcholine receptors translated by cat muscle mRNA in Xenopus oocytes. EMBO. J. 1:1307–1312.
   Nelson, M.E., Kuryatov, A., Choi, C.H., Zhou, Y. and Lindstrom, J. 2003. Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. Mol. Pharmacol. 63:332–341.
   Ogden, D.C. and Colquhoun, D. 1985. Ion channel block by acetylcholine, carbachol and suberyldicholine at the frog neuromuscular junction. Proc. R. Soc. Lond. B. Biol. Sci. 225:329–355.
   Papke, R.L. and Thinschmidt, J.S. 1998. The correction of alpha7 nicotinic acetylcholine receptor concentration–response relationships in Xenopus oocytes. Neurosci. Lett. 256:163–166.
   Paradiso, K., Zhang, J., and Steinbach, J.H. 2001. The C terminus of the human nicotinic alpha4beta2 receptor forms a binding site required for potentiation by an estrogenic steroid. J. Neurosci. 21:6561–6568.
   Peng, J.H., Lucero, L., Fryer, J., Herl, J., Leonard, S.S., and Lukas, R.J. 1999. Inducible, heterologous expression of human alpha7‐nicotinic acetylcholine receptors in a native nicotinic receptor‐null human clonal line. Brain Res. 825:172–179.
   Pereira, E., Alkondon, M., Albuquerque, E., and Maelicke, A. 1999. Functional diversity of nicotinic acetylcholine receptors in the mammalian central nervous system: Physiological relevance In Neuronal Nicotinic Receptors (S., Arneric, and J., Brioni, eds.) pp. 161–186. Wiley‐Liss, New York.
   Phillips, H.A., Favre, I., Kirkpatrick, M., Zuberi, S.M., Goudie, D., Heron, S.E., Scheffer, I.E., Sutherland, G.R., Berkovic, S.F., Bertrand, D., and Mulley, J.C. 2001. CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am. J. Hum. Genet. 68:225–231.
   Reitstetter, R., Lukas, R.J., and Gruener, R. 1999. Dependence of nicotinic acetylcholine receptor recovery from desensitization on the duration of agonist exposure. J. Pharmacol. Exp. Ther. 289:656–660.
   Revah, F., Bertrand, D., Galzi, J.L., Devillers‐Thiery, A., Mulle, C., Hussy, N., Bertrand, S., Ballivet, M., and Changeux, J.P. 1991. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–849.
   Rothlin, C.V., Katz, E., Verbitsky, M., and Elgoyhen, A.B. 1999. The alpha9 nicotinic acetylcholine receptor shares pharmacological properties with type A gamma‐aminobutyric acid, glycine, and type 3 serotonin receptors. Mol. Pharmacol. 55:248–254.
   Sgard, F., Charpantier, E., Bertrand, S., Walker, N., Caput, D., Graham, D., Bertrand, D., and Besnard, F. 2002. A Novel Human Nicotinic Receptor Subunit, alpha10, that confers functionality to the alpha9‐Subunit. Mol. Pharmacol. 61: 150–159.
   Shafaee, N., Houng, M., Truong, A., Viseshakul, N., Figl, A., Sandhu, S., Forsayeth, J.R., Dwoskin, L.P., Crooks, P.A. and Cohen, B.N. 1999. Pharmacological similarities between native brain and heterologously expressed alpha4beta2 nicotinic receptors. Br. J. Pharmacol. 128:1291–1299.
   Spang, J.E., Bertrand, S., Westera, G., Patt, J.T., Schubiger, P.A., and Bertrand, D. 2000. Chemical modification of epibatidine causes a switch from agonist to antagonist and modifies its selectivity for neuronal nicotinic acetylcholine receptors. Chem. Biol. 7:545–555.
   Spang, J.E., Patt, J.T., Bertrand, S., Bertrand, D., Westera, G., and Schubiger, P.A. 1999. Synthesis and electrophysiological studies of a novel epibatidine analogue. J. Recept. Signal Transduct. Res. 19:521–531.
   Valera, S., Ballivet, M., and Bertrand, D. 1992. Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A. 89:9949–9953.
   Woodhull, A.M. 1973. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61:687–708.
   Zarel, M.M. and Dani, J. 1995. Structural basis for explaining open‐channel blockade of the NMDA receptor. J. Neurosci. 15:1446–1454.
PDF or HTML at Wiley Online Library