Single‐Channel Recording of Glutamate Receptors

Chris Shelley1

1 Present address: Department of Biology, Franklin and Marshall College, Lancaster, 17604, Pennsylvania
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 11.16
DOI:  10.1002/0471141755.ph1116s68
Online Posting Date:  March, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Highlighted in this unit are issues that should be considered when recording glutamate receptors at the single‐channel level, including some commonly encountered problems and their remedies. “UNIT 11.17, Single‐Channel Analysis of Glutamate Receptors” describes analysis techniques used to characterize the recorded single‐channel properties. © 2015 by John Wiley & Sons, Inc.

Keywords: single channel; glutamate receptor; ion channel

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Recording Single Glutamate Receptor Currents from Outside‐Out Patches
  • Support Protocol 1: Expression of Glutamate Receptor Channels in a Human Cell Line
  • Support Protocol 2: Fabrication of Recording Pipets
  • Reagents and Solutions
  • Commentary
  • References
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Recording Single Glutamate Receptor Currents from Outside‐Out Patches

  • Glutamate or other appropriate agonist (e.g., Sigma‐Aldrich, Tocris Bioscience)
  • Extracellular solution (see recipe)
  • Intracellular solution (see recipe)
  • Mammalian cells expressing glutamate receptors, on coverslips in wells of 4‐well plates ( protocol 2)
  • Small (e.g., 1‐ml) syringe
  • 0.22‐μm syringe filter (e.g., EMD Millipore)
  • Microfil pipet filler (World Precision Instruments)
  • Electrophysiology rig including:
    • Air table (e.g., Automate Scientific, Thorlabs, TMC)
    • Faraday cage (e.g., Automate Scientific, Harvard Apparatus, Thorlabs)Recording chamber and stage (e.g., Scientifica)
    • Pipet holder (e.g., G23 Instruments, Molecular Devices)
    • Coarse micromanipulator (e.g., Narashige, Warner Instruments, World Precision Instruments).
    • Fine micromanipulator (e.g., Narashige, Warner Instruments, World Precision Instruments)
    • Patch clamp amplifier and headstage (e.g., Heka Elektronik, Molecular Devices, Warner Instruments)
    • Digitizer (e.g., Cambridge Electronic Design, Molecular Devices)
    • Fluorescent microscope (e.g., Leica Microsystems, Nikon Instruments, Olympus, Zeiss)
  • Recording pipets ( protocol 3)
  • Computer for data storage and analysis
  • Data acquisition and analysis software (see Table 11.16.1 in unit 11.17)

Support Protocol 1: Expression of Glutamate Receptor Channels in a Human Cell Line

  • Lipofectamine transfection reagent (Life Technologies)
  • Opti‐MEM transfection medium (Life Technologies)
  • cDNA encoding glutamate receptor ion channel subunits (e.g., Origene)
  • cDNA encoding green fluorescent protein (e.g., Origene)
  • HEK 293 cells (e.g., American Type Tissue Collection, European Collection of Cell Cultures)
  • Ca2+‐ and Mg2+‐free phosphate‐buffered saline (Dulbecco's PBS; e.g., Life Technologies)
  • Trypsin/EDTA solution (0.5 g porcine trypsin, 0.2 g tetrasodium EDTA per 1000 ml; e.g., Life Technologies; can be stored for many months in 1‐ml aliquots at −20°C)
  • Dulbecco's modified Eagle medium (DMEM) with glutamine and low glucose (e.g., Life Technologies, Sigma‐Aldrich)
  • HEK cell culture medium (see recipe)
  • 25‐cm2 tissue culture flasks, (e.g., Life Technologies)
  • 15‐ml conical centrifuge tubes (e.g., Life Technologies)
  • Clinical benchtop centrifuge (e.g., Fisher Scientific)
  • 10‐mm poly‐L‐lysine‐coated coverslips (see recipe)
  • Four‐well plates (e.g., Life Technologies, VWR)

Support Protocol 2: Fabrication of Recording Pipets

  • Sylgard 184 silicone elastomer (Dow Corning)
  • Standard wall (1.5 mm outer diameter, 0.86 mm inner diameter) borosilicate glass capillary tubes, 150 mm in length (Warner Instruments)
  • Pipet puller (e.g., Narashige, Sutter Instrument Company, Warner Instruments)
  • Dissecting microscope for application of elastomer
  • Heat gun or heated coil for curing the elastomer
  • Microforge (e.g., Heka Elektronik, Narashige, Warner Instruments)
  • NOTE: Please refer to other units in Current Protocols in Pharmacology Chapters 10 and 11 for additional detail on pipet pulling.
PDF or HTML at Wiley Online Library



Literature Cited

  Acker, T.M., Yuan, H., Hansen, K.B., Vance, K.M., Ogden, K.K., Jensen, H.S., Burger, P.B., Mullasseril, P., Snyder, J.P., Liotta, D.C., and Traynelis, S.F. 2011. Mechanism for noncompetitive inhibition by novel GluN2C/D N‐methyl‐d‐aspartate receptor subunit‐selective modulators. Mol. Pharm. 80:782‐795.
  Bahr, B.A. Vodyanoy, V., Hall, R.A., Suppiramaniam, V., Kessler, M., Sumikawa, K., and Lynch, G. 1992. Functional reconstitution of alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐proprionate (AMPA) receptors from rat brain. J. Neurochem. 59:1979‐1982.
  Baranovic, J., Ramanujan, C.S., Kasai, N., Midgett, C.R., Madden, D.R., Torimitsu, K., and Ryan, J.F. 2013. Reconstitution of homomeric gluA2(flop) receptors in supported lipid membranes: Functional and structural properties. J. Biol. Chem. 288:8647‐8657.
  Christine, C.W. and Choi, D.W. 1990. Effect of zinc on NMDA receptor‐mediated channel currents in cortical neurons. J. Neurosci. 10:108‐116.
  Clark, B.A., Farrant, M., and Cull‐Candy, S.G. 1997. A direct comparison of the single‐channel properties of synaptic and extrasynaptic NMDA receptors. J. Neurosci. 17:107‐116.
  Coombs, I.D., Soto, D., Zonouzi, M., Renzi, M., Shelley, C., Farrant, M., and Cull‐Candy, S.G. 2012. Cornichons modify channel properties of recombinant and glial AMPA receptors. J. Neurosci. 32:9796‐9804.
  Cull‐Candy, S.G., Miledi, R., and Parker, I. 1981. Single glutamate‐activated channels recorded from locust muscle fibres with perfused patch‐clamp electrodes. J. Physiol. 321:195‐210.
  Currás, M.C. and Pallotta, B.S. 1996. Single‐channel evidence for glycine and NMDA requirement in NMDA receptor activation. Brain Res. 740:27‐40.
  Derkach, V., Barria, A., and Soderling, T.R. 1999. Ca2+/calmodulin‐kinase II enhances channel conductance of alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐proprionate type glutamate receptors. Proc. Natl. Acad. Sci. U.S.A. 96:3269‐3274.
  Dilmore, J.G. and Johnson, J.W. 1998. Open channel block and alteration of N‐methyl‐d‐aspartic acid receptor gating by an analog of phencyclidine. Biophys. J. 75:1801‐1816.
  Fucile, S., Miledi, R., and Eusebi, F. 2006. Effects of cyclothiazide on GluR1/AMPA receptors. Proc. Natl. Acad. Sci. U.S.A. 106:2943‐2947.
  Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J. 1981. Improved patch‐clamp techniques for high‐resolution current recording from cells and cell‐free membrane patches. Pflugers Arch. 391:85‐100.
  Jackson, A.C. and Nicoll, R.A. 2011. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron 70:178‐199.
  Lieberman, D.N. and Mody, I. 1994. Regulation of NMDA channel function by endogenous Ca(2+)‐dependent phosphatase. Nature 369:235‐239.
  Mayer, M.L. 2011. Structure and mechanism of glutamate receptor ion channel assembly, activation and modulation. Curr. Opin. Neurobiol. 21:283‐290.
  McLennan, H. 1983. Receptors for the excitatory amino acids in the mammalian nervous system. Prog. Neurobiol. 20:251‐271.
  Molnár, E. 2013. Are Neto1 and APP auxiliary subunits of NMDA receptors? J. Neurochem. 126:551‐553.
  Morimoto‐Tomita, M., Zhang, W., Straub, C., Cho, C.H., Kim, K.S., Howe, J.R., and Tomita, S. 2009. Autoinactivation of neuronal AMPA receptors via glutamate‐regulated TARP interaction. Neuron 61:101‐112.
  Neher, E. and Sakmann, B. 1976. Single‐channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799‐802.
  Patlak, J.B., Gration, K.A., and Usherwood, P.N. 1979. Single glutamate‐activated channels in locust muscle. Nature, 278:643‐645.
  Plested, A.J. 2011. Kainate receptor modulation by sodium and chloride. Adv. Exp. Med. Biol. 717:93‐113.
  Rock, D.M. and Macdonald, R.L. 1992. The polyamine diaminodecane (DA‐10) produces a voltage‐dependent flickery block of single NMDA receptor channels. Neurosci. Lett. 144:111‐115.
  Schorge, S. and Colquhoun, D. 2003. Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J. Neurosci. 23:1151‐1158.
  Smith, T.C. and Howe, J.R. 2000. Concentration‐dependent substate behavior of native AMPA receptors. Nat. Neurosci. 3:992‐997.
  Traynelis, S.F. and Cull‐Candy, S.G. 1991. Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J. Physiol. 433:727‐763.
  Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., and Dingledine, R. 2010. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 62:405‐496.
  Wyllie, D.J.A., Traynelis, S.F., and Cull‐Candy, S.G. 1993. Evidence for more than one type of non‐NMDA receptor in outside‐out patches from cerebellar granule cells of the rat. J. Physiol. 463:193‐226.
  Yamazaki, M., Araki, K., Shibata, A., and Mishina, M. 1992. Molecular cloning of a cDNA encoding a novel member of the mouse glutamate receptor channel family. Biochem. Biophys. Res. Commun. 183:886‐892.
PDF or HTML at Wiley Online Library