A Human Induced Pluripotent Stem Cell−Derived Cardiomyocyte (hiPSC‐CM) Multielectrode Array Assay for Preclinical Cardiac Electrophysiology Safety Screening

Kate Harris1

1 Safety Pharmacology, GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, United Kingdom
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 11.18
DOI:  10.1002/0471141755.ph1118s71
Online Posting Date:  December, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Cardiotoxicity is a leading cause of compound attrition during drug development. Preclinical models used to assess the risk for compound‐induced effects on cardiac electrophysiology largely rely on animals that can differ in terms of sensitivity and specificity to the targeted clinical response. There is currently no in vitro human cardiomyocyte model for routine preclinical compound screening, as adult human cardiac tissue is unsuitable for such screening. The commercial availability of human induced pluripotent stem cell−derived cardiomyocytes (hiPSC‐CMs) makes possible the development of assays for assessing compound‐induced effects on cardiac function in a human cardiomyocyte‐like model. Using multielectrode array (MEA) technology with hiPSC‐CMs provides a facile screen for compound‐induced effects on cardiac electrophysiology. The MEA data generated from hiPSC‐CMs correlate well with the results of conventional preclinical assays and clinical findings. Described in this unit is a technique for measuring extracellular field potentials from hiPSC‐CMs using MEA technology to screen for compound‐induced effects on cardiac electrophysiology. © 2015 by John Wiley & Sons, Inc.

Keywords: human induced pluripotent stem cell−derived cardiomyocytes; multielectrode array; preclinical; cardiac electrophysiology; cardiotoxicity; arrhythmia

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Measurement of Field Potentials from hiPSC‐CM Monolayers Using Mea Technology
  • Support Protocol 1: Preparation of iCell Cardiomyocyte Monolayers on Mea Plates
  • Support Protocol 2: Analysis of MEA Recording Data
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Measurement of Field Potentials from hiPSC‐CM Monolayers Using Mea Technology

  • iCell cardiomyocyte monolayers on MEA plates (see protocol 2)
  • Serum‐free medium (see recipe)
  • Test compound(s) of interest
  • Control compounds:
    • Captopril (Sigma‐Aldrich, cat. no. C4042)
    • E4031 (Enzo Life Sciences, cat. no. BML‐KC158‐0025)
    • Nifedipine (Sigma‐Aldrich, cat. no. N7634)
  • Dimethyl sulfoxide (DMSO)
  • MEA2100‐System (Multi Channel Systems)
  • Computer running MC_Rack software (Multi Channel Systems)

Support Protocol 1: Preparation of iCell Cardiomyocyte Monolayers on Mea Plates

  • Sterile water (e.g., Sigma‐Aldrich, cat. no. W3500)
  • EmbryoMax 0.1% (w/v) gelatin solution (Millipore, cat. no. ES‐006‐B)
  • iCell Cardiomyocytes Plating Medium (Cellular Dynamics International), room temperature
  • iCell Cardiomyocytes (Cellular Dynamics International, cat. no. CMC‐100‐010‐001, >4.0 × 106 viable cells), stored in liquid nitrogen
  • Trypan blue (Gibco, cat. no. 15250)
  • iCell Cardiomyocytes Maintenance Medium (Cellular Dynamics International), 37°C
  • 50 mg/ml gentamicin (Gibco, cat. no. 15750)
  • Single‐well EcoMEA plates (Multi Channel Systems, cat. no. 60EcoMEA‐Glass‐gr)
  • 100‐mm sterile Petri dishes (e.g., Grenier Bio‐One, cat. no. 632161)
  • Laboratory tissues (e.g., Kimwipes)
  • Hemocytometer or automated cell counter
  • 50‐ml sterile centrifuge tube (e.g., Corning Life Sciences)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Abassi, Y.A., Xi, B., Li, N., Ouyang, W., Seiler, A., Watzele, M., Kettenhofen, R., Bohlen, H., Ehlich, A., Kolossov, E., Wang, X., and Xu, X. 2012. Dynamic monitoring of beating periodicity of stem cell‐derived cardiomyocytes as a predictive tool for preclinical safety assessment. Br. J. Pharmacol. 165:1424‐1441. doi: 10.1111/j.1476‐5381.2011.01623.x.
  Anson, B.D., Kolaja, K.L., and Kamp, T.J. 2011. Opportunities for use of human iPS cells in predictive toxicology. Clin. Pharmacol. Ther. 89:754‐758. doi: 10.1038/clpt.2011.9.
  Batey, A.J. and Doe, C.P. 2002. A method for QT correction based on beat‐to‐beat analysis of the QT/RR interval relationship in conscious telemetred beagle dogs. J. Pharmacol. Toxicol. Methods 48:11‐19. doi: 10.1016/S1056‐8719(03)00009‐1.
  Cavero, I. and Holzgrefe, H. 2014. Comprehensive in vitro proarrhythmia assay, a novel in vitro/in silico paradigm to detect ventricular proarrhythmic liability: A visionary 21st century initiative. Expert. Opin. Drug. Saf. 13:745‐758. doi: 10.1517/14740338.2014.940310.
  Doerr, L., Thomas, U., Guinot, D.R., Bot, C.T., Stoelzle‐Feix, S., Beckler, M., George, M., and Fertig, N. 2015. New easy‐to‐use hybrid system for extracellular potential and impedance recordings. J. Lab. Autom. 20:175‐188. doi: 10.1177/2211068214562832.
  Fujiki, A., Tani, M., Mizumaki, K., Shimono, M., and Inoue, H. 1994. Electrophysiologic effects of intravenous E‐4031, a novel class III antiarrhythmic agent, in patients with supraventricular tachyarrhythmias. J. Cardiovasc. Pharmacol. 23:374‐378. doi: 10.1097/00005344‐199423030‐00003.
  Gibson, J.K., Yue, Y., Bronson, J., Palmer, C., and Numann, R. 2014. Human stem cell‐derived cardiomyocytes detect drug‐mediated changes in action potentials and ion currents. J. Pharmacol. Toxicol. Methods 70:255‐267. doi: 10.1016/j.vascn.2014.09.005.
  Guo, L., Abrams, R.M., Babiarz, J.E., Cohen, J.D., Kameoka, S., Sanders, M.J., Chiao, E., and Kolaja, K.L. 2011. Estimating the risk of drug‐induced proarrhythmia using human induced pluripotent stem cell‐derived cardiomyocytes. Toxicol. Sci. 123:281‐289. doi: 10.1093/toxsci/kfr158.
  Guo, L., Coyle, L., Abrams, R.M., Kemper, R., Chiao, E.T., and Kolaja, K.L. 2013. Refining the human iPSC‐cardiomyocyte arrhythmic risk assessment model. Toxicol. Sci. 136:581‐594. doi: 10.1093/toxsci/kft205.
  Halbach, M., Egert, U., Hescheler, J., and Banach, K. 2003. Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures. Cell Physiol. Biochem. 13:271‐284. doi: 10.1159/000074542.
  Harris, K., Aylott, M., Cui, Y., Louttit, J.B., McMahon, N.C., and Sridhar, A. 2013. Comparison of electrophysiological data from human‐induced pluripotent stem cell‐derived cardiomyocytes to functional preclinical safety assays. Toxicol. Sci. 134:412‐426. doi: 10.1093/toxsci/kft113.
  Khan, J.M., Lyon, A.R., and Harding, S.E. 2013. The case for induced pluripotent stem cell‐derived cardiomyocytes in pharmacological screening. Br. J. Pharmacol. 169:304‐317. doi: 10.1111/j.1476‐5381.2012.02118.x.
  Kirsch, G.E., Obejero‐Paz, C.A., and Bruening‐Wright, A. 2014. Functional characterization of human stem cell−derived cardiomyocytes. Curr. Protoc. Pharmacol. 64:11.12.1‐11.12.26.
  Kuryshev, Y.A., Ficker, E., Wang, L., Hawryluk, P., Dennis, A.T., Wible, B.A., Brown, A.M., Kang, J., Chen, X.L., Sawamura, K., Reynolds, W., and Rampe, D. 2005. Pentamidine‐induced long QT syndrome and block of hERG trafficking. J. Pharmacol. Exp. Ther. 312:316‐323. doi: 10.1124/jpet.104.073692.
  Laverty, H., Benson, C., Cartwright, E., Cross, M., Garland, C., Hammond, T., Holloway, C., McMahon, N., Milligan, J., Park, B., Pirmohamed, M., Pollard, C., Radford, J., Roome, N., Sager, P., Singh, S., Suter, T., Suter, W., Trafford, A., Volders, P., Wallis, R., Weaver, R., York, M., and Valentin, J. 2011. How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines? Br. J. Pharmacol. 163:675‐693. doi: 10.1111/j.1476‐5381.2011.01255.x.
  Lawrence, C.L., Bridgland‐Taylor, M.H., Pollard, C.E., Hammond, T.G., and Valentin, J.P. 2006. A rabbit Langendorff heart proarrhythmia model: Predictive value for clinical identification of Torsades de Pointes. Br. J. Pharmacol. 149:845‐860. doi: 10.1038/sj.bjp.0706894.
  Liu, T., Brown, B.S., Wu, Y., Antzelevitch, C., Kowey, P.R., and Yan, G.X. 2006. Blinded validation of the isolated arterially perfused rabbit ventricular wedge in preclinical assessment of drug‐induced proarrhythmias. Heart Rhythm 3:948‐956. doi: 10.1016/j.hrthm.2006.04.021.
  Ma, J., Guo, L., Fiene, S.J., Anson, B.D., Thomson, J.A., Kamp, T.J., Kolaja, K.L., Swanson, B.J., and January, C.T. 2011. High purity human‐induced pluripotent stem cell‐derived cardiomyocytes: Electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol. 301:H2006‐H2017. doi: 10.1152/ajpheart.00694.2011.
  Meyer, T., Boven, K.H., Gunther, E., and Fejtl, M. 2004. Micro‐electrode arrays in cardiac safety pharmacology: A novel tool to study QT interval prolongation. Drug Saf. 27:763‐772. doi: 10.2165/00002018‐200427110‐00002.
  Navarrete, E.G., Liang, P., Lan, F., Sanchez‐Freire, V., Simmons, C., Gong, T., Sharma, A., Burridge, P.W., Patlolla, B., Lee, A.S., Wu, H., Beygui, R.E., Wu, S.M., Robbins, R.C., Bers, D.M., and Wu, J.C. 2013. Screening drug‐induced arrhythmia [corrected] using human induced pluripotent stem cell‐derived cardiomyocytes and low‐impedance microelectrode arrays. Circulation 128:S3‐13. doi: 10.1161/CIRCULATIONAHA.112.000570.
  Nozaki, Y., Honda, Y., Tsujimoto, S., Watanabe, H., Kunimatsu, T., and Funabashi, H. 2014. Availability of human induced pluripotent stem cell‐derived cardiomyocytes in assessment of drug potential for QT prolongation. Toxicol. Appl. Pharmacol. 278:72‐77. doi: 10.1016/j.taap.2014.04.007.
  Omata, T., Kasai, C., Hashimoto, M., Hombo, T., and Yamamoto, K. 2005. QT PRODACT: Comparison of non‐clinical studies for drug‐induced delay in ventricular repolarization and their role in safety evaluation in humans. J. Pharmacol. Sci. 99:531‐541. doi: 10.1254/jphs.QT‐C12.
  Pollard, C.E., Abi, G.N., Bridgland‐Taylor, M.H., Easter, A., Hammond, T.G., and Valentin, J.P. 2010. An introduction to QT interval prolongation and non‐clinical approaches to assessing and reducing risk. Br. J. Pharmacol. 159:12‐21. doi: 10.1111/j.1476‐5381.2009.00207.x.
  Redfern, W.S., Carlsson, L., Davis, A.S., Lynch, W.G., MacKenzie, I., Palethorpe, S., Siegl, P.K., Strang, I., Sullivan, A.T., Wallis, R., Camm, A.J., and Hammond, T.G. 2003. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: Evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58:32‐45. doi: 10.1016/S0008‐6363(02)00846‐5.
  Sager, P.T., Gintant, G., Turner, J.R., Pettit, S., and Stockbridge, N. 2014. Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the Cardiac Safety Research Consortium. Am. Heart J. 167:292‐300. doi: 10.1016/j.ahj.2013.11.004.
  Scheel, O., Frech, S., Amuzescu, B., Eisfeld, J., Lin, K.H., and Knott, T. 2014. Action potential characterization of human induced pluripotent stem cell‐derived cardiomyocytes using automated patch‐clamp technology. Assay Drug Dev. Technol. 12:457‐469. doi: 10.1089/adt.2014.601.
  Tanaka, T., Tohyama, S., Murata, M., Nomura, F., Kaneko, T., Chen, H., Hattori, F., Egashira, T., Seki, T., Ohno, Y., Koshimizu, U., Yuasa, S., Ogawa, S., Yamanaka, S., Yasuda, K., and Fukuda, K. 2009. In vitro pharmacologic testing using human induced pluripotent stem cell‐derived cardiomyocytes. Biochem. Biophys. Res. Commun. 385:497‐502. doi: 10.1016/j.bbrc.2009.05.073.
  Valentin, J.P., Bialecki, R., Ewart, L., Hammond, T., Leishmann, D., Lindgren, S., Martinez, V., Pollard, C., Redfern, W., and Wallis, R. 2009. A framework to assess the translation of safety pharmacology data to humans. J. Pharmacol. Toxicol. Methods 60:152‐158. doi: 10.1016/j.vascn.2009.05.011.
  Wallis, R.M. 2010. Integrated risk assessment and predictive value to humans of non‐clinical repolarization assays. Br. J. Pharmacol. 159:115‐121. doi: 10.1111/j.1476‐5381.2009.00395.x.
PDF or HTML at Wiley Online Library