Overview on Research and Clinical Applications of Optogenetics

Chris Towne1, Kimberly R. Thompson1

1 Circuit Therapeutics, Inc, California
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 11.19
DOI:  10.1002/cpph.13
Online Posting Date:  December, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Optogenetics is a method that uses light to control cells in living tissue, typically neurons, that have been modified to express light‐sensitive ion channels and pumps. The approach facilitates neuromodulation in brain preparations and freely moving animals with unmatched spatial and temporal resolution. This optogenetics overview describes the vast array of light‐sensitive proteins available and the methods used to deliver them to tissue and modulate them with light. How these methods have so far enhanced our knowledge of fundamental neuroscience and psychiatric disease will be discussed as well as how they may contribute to drug discovery in the future. Finally, the potential rewards and risks of therapeutic gene transfer of optogenetic proteins in humans will be considered. © 2016 by John Wiley & Sons, Inc.

Keywords: drug discovery; gene therapy; neuroscience; optogenetics

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Optogenetic Techniques
  • Optogenetics in Basic Neuroscience
  • Optogenetic Applications Outside Basic Research
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  American Psychiatric Association. 2013. Diagnostic and Statistical Manual of Mental Disorders, 5th edition. American Psychiatric Publishing, Arlington, VA.
  Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K., and de Lecea, L. 2007. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420‐424. doi: 10.1038/nature06310.
  Adamantidis, A.R., Tsai, H.C., Boutrel, B., Zhang, F., Stuber, G.D., Budygin, E.A., Touriño, C., Bonci, A., Deisseroth, K., and de Lecea, L. 2011. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward‐seeking behavior. J. Neurosci. 31:10829‐10835. doi: 10.1523/JNEUROSCI.2246‐11.2011.
  Adhikari, A. 2014. Distributed circuits underlying anxiety. Front. Behav. Neurosci. 8:112. doi: 10.3389/fnbeh.2014.00112.
  Agus, V., Di Silvio, A., Rolland, J.F., Mondini, A., Tremolada, S., Montag, K., Scarabottolo, L., Redaelli, L., and Lohmer, S. 2015. Bringing the light to high throughput screening: Use of optogenetic tools for the development of recombinant cellular assays. Proc. SPIE 9305:93052T. doi:10.1117/12.2077579.
  Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H., and Deisseroth, K. 2009. Temporally precise in vivo control of intracellular signalling. Nature 458:1025‐1029. doi: 10.1038/nature07926.
  Aponte, Y., Atasoy, D., and Sternson, S.M. 2011. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14:351‐355. doi: 10.1038/nn.2739.
  Atasoy, D., Betley, J.N., Su, H.H., and Sternson, S.M. 2012. Deconstruction of a neural circuit for hunger. Nature 488:172‐177. doi: 10.1038/nature11270.
  Barrett, J.M., Berlinguer‐Palmini, R., and Degenaar, P. 2014. Optogenetic approaches to retinal prosthesis. Vis. Neurosci. 31:345‐354. doi: 10.1017/S0952523814000212.
  Berndt, A., Yizhar, O., Gunaydin, L.A., Hegemann, P., and Deisseroth, K. 2009. Bi‐stable neural state switches. Nat. Neurosci. 12:229‐234. doi: 10.1038/nn.2247.
  Berndt, A., Lee, S.Y., Ramakrishnan, C., and Deisseroth, K. 2014. Structure‐guided transformation of channelrhodopsin into a light‐activated chloride channel. Science 344:420‐424. doi: 10.1126/science.1252367.
  Betley, J.N., Cao, Z.F., Ritola, K.D., and Sternson, S.M. 2013. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155:1337‐1350. doi: 10.1016/j.cell.2013.11.002.
  Beyeler, A., Eckhardt, C.A., and Tye, K.M. 2014. Deciphering memory function with optogenetics. Prog. Mol. Biol. Transl. Sci. 122:341‐390. doi: 10.1016/B978‐0‐12‐420170‐5.00012‐X.
  Bi, A., Cui, J., Ma, Y.P., Olshevskaya, E., Pu, M., Dizhoor, A.M., and Pan, Z.H. 2006. Ectopic expression of a microbial‐type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23‐33. doi: 10.1016/j.neuron.2006.02.026.
  Bock, R., Shin, J.H., Kaplan, A.R., Dobi, A., Markey, E., Kramer, P.F., Gremel, C.M., Christensen, C.H., Adrover, M.F., and Alvarez, V.A. 2013. Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat. Neurosci. 16:632‐638. doi: 10.1038/nn.3369.
  Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. 2005. Millisecond‐timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263‐1268. doi: 10.1038/nn1525.
  Boyle, P.M., Entcheva, E., and Trayanova, N.A. 2014. See the light: Can optogenetics restore healthy heartbeats? And, if it can, is it really worth the effort? Expert. Rev. Cardiovasc. Ther. 12:17‐20. doi: 10.1586/14779072.2014.864951.
  Britt, J.P., Benaliouad, F., McDevitt, R.A., Stuber, G.D., Wise, R.A., and Bonci, A. 2012. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76:790‐803. doi: 10.1016/j.neuron.2012.09.040.
  Bruegmann, T., Malan, D., Hesse, M., Beiert, T., Fuegemann, C.J., Fleischmann, B.K., and Sasse, P. 2010. Optogenetic control of heart muscle in vitro and in vivo. Nat. Methods 7:897‐900. doi: 10.1038/nmeth.1512.
  Bryson, J.B., Machado, C.B., Crossley, M., Stevenson, D., Bros‐Facer, V., Burrone, J., Greensmith, L., and Lieberam, I. 2014. Optical control of muscle function by transplantation of stem cell‐derived motor neurons in mice. Science 344:94‐97. doi: 10.1126/science.1248523.
  Busskamp, V., Duebel, J., Balya, D., Fradot, M., Viney, T.J., Siegert, S., Groner, A.C., Cabuy, E., Forster, V., Seeliger, M., Biel, M., Humphries, P., Paques, M., Mohand‐Said, S., Trono, D., Deisseroth, K., Sahel, J.A., Picaud, S., and Roska, B. 2010. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413‐417. doi: 10.1126/science.1190897.
  Calu, D.J., Kawa, A.B., Marchant, N.J., Navarre, B.M., Henderson, M.J., Chen, B., Yau, H.J., Bossert, J.M., Schoenbaum, G., Deisseroth, K., Harvey, B.K., Hope, B.T., and Shaham, Y. 2013. Optogenetic inhibition of dorsal medial prefrontal cortex attenuates stress‐induced reinstatement of palatable food seeking in female rats. J. Neurosci. 33:214‐226. doi: 10.1523/JNEUROSCI.2016‐12.2013.
  Carter, M.E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., Deisseroth, K., and de Lecea, L. 2010. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13:1526‐1533. doi: 10.1038/nn.2682.
  Carter, M.E., Brill, J., Bonnavion, P., Huguenard, J.R., Huerta, R., and de Lecea, L. 2012. Mechanism for Hypocretin‐mediated sleep‐to‐wake transitions. Proc. Natl. Acad Sci. U. S. A. 109:E2635‐E2644. doi: 10.1073/pnas.1202526109.
  Carter, M.E., Soden, M.E., Zweifel, L.S., and Palmiter, R.D. 2013. Genetic identification of a neural circuit that suppresses appetite. Nature 503:111‐114. doi: 10.1038/nature12596.
  Carter, M.E., Han, S., and Palmiter, RD. 2015. Parabrachial calcitonin gene‐related peptide neurons mediate conditioned taste aversion. J. Neurosci. 35:4582‐4586. doi: 10.1523/JNEUROSCI.3729‐14.2015.
  Challis, C., Beck, S.G., and Berton, O. 2014. Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat. Front. Behav. Neurosci. 8:43. doi: 10.3389/fnbeh.2014.00043.
  Chen, B.T., Yau, H.J., Hatch, C., Kusumoto‐Yoshida, I., Cho, S.L., Hopf, F.W., and Bonci, A. 2013. Rescuing cocaine‐induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496:359‐362. doi: 10.1038/nature12024.
  Chow, B.Y., Han, X., Dobry, A.S., Qian, X., Chuong, A.S., Li, M., Henninger, M.A., Belfort, G.M., Lin, Y., Monahan, P.E., and Boyden, E.S. 2010. High‐performance genetically targetable optical neural silencing by light‐driven proton pumps. Nature 463:98‐102. doi: 10.1038/nature08652.
  Chuong, A.S., Miri, M.L., Busskamp, V., Matthews, G.A., Acker, L.C., Sørensen, A.T., Young, A., Klapoetke, N.C., Henninger, M.A., Kodandaramaiah, S.B., Ogawa, M., Ramanlal, S.B., Bandler, R.C., Allen, B.D., Forest, C.R., Chow, B.Y., Han, X., Lin, Y., Tye, K.M., Roska, B., Cardin, J.A., and Boyden, E.S. 2014. Noninvasive optical inhibition with a red‐shifted microbial rhodopsin. Nat. Neurosci. 17:1123‐1129. doi: 10.1038/nn.3752.
  Ciesielska, A., Hadaczek, P., Mittermeyer, G., Zhou, S., Wright, J.F., Bankiewicz, K.S., and Forsayeth, J. 2013. Cerebral infusion of AAV9 vector‐encoding non‐self proteins can elicit cell‐mediated immune responses. Mol. Ther. 21:158‐166. doi: 10.1038/mt.2012.167.
  Ciocchi, S., Herry, C., Grenier, F., Wolff, S.B., Letzkus, J.J., Vlachos, I., Ehrlich, I., Sprengel, R., Deisseroth, K., Stadler, M.B., Müller, C., and Lüthi, A. 2010. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468:277‐282. doi: 10.1038/nature09559.
  Clements, I., Millard, D.C., Nicolini, A.M., Preyer, A.J., Grier, R., Heckerling, A., Blum, R.A., Tyler, P., McSweeney, K.M., Lu, Y., Hall, D., and Ross, J.D. 2016. Optogenetic stimulation of multiwell MEA plates for neural and cardiac applications. Proc. SPIE. 9690:96902C‐2. doi:10.1117/12.2213708.
  Cohen, J.Y., Haesler, S., Vong, L., Lowell, B.B., and Uchida, N. 2012. Neuron‐type‐specific signals for reward and punishment in the ventral tegmental area. Nature 482:85‐88. doi: 10.1038/nature10754.
  Covington, H.E. III, Lobo, M.K., Maze, I., Vialou, V., Hyman, J.M., Zaman, S., LaPlant, Q., Mouzon, E., Ghose, S., Tamminga, C.A., Neve, R.L., Deisseroth, K., and Nestler, E.J. 2010. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J. Neurosci. 30:16082‐16090. doi: 10.1523/JNEUROSCI.1731‐10.2010.
  Crick, F.H. 1979. Thinking about the brain. Sci. Am. 241:219‐232. doi: 10.1038/scientificamerican0979‐219.
  de Lecea, L. 2015. Optogenetic control of hypocretin (orexin) neurons and arousal circuits. Curr. Top. Behav. Neurosci. 25:367‐378. doi: 10.1007/7854_2014_364.
  de Lecea, L., Carter, M.E., and Adamantidis, A. 2012. Shining light on wakefulness and arousal. Biol. Psychiatry 71:1046‐1052. doi: 10.1016/j.biopsych.2012.01.032.
  Diester, I., Kaufman, M.T., Mogri, M., Pashaie, R., Goo, W., Yizhar, O., Ramakrishnan, C., Deisseroth, K., and Shenoy, K.V. 2011. An optogenetic toolbox designed for primates. Nat. Neurosci. 14:387‐397. doi: 10.1038/nn.2749.
  Dietz, D.M., Sun, H., Lobo, M.K., Cahill, M.E., Chadwick, B., Gao, V., Koo, J.W., Mazei‐Robison, M.S., Dias, C., Maze, I., Damez‐Werno, D., Dietz, K.C., Scobie, K.N., Ferguson, D., Christoffel, D., Ohnishi, Y., Hodes, G.E., Zheng, Y., Neve, R.L., Hahn, K.M., Russo, S.J., and Nestler, E.J. 2012. Rac1 is essential in cocaine‐induced structural plasticity of nucleus accumbens neurons. Nat. Neurosci. 15:891‐896. doi: 10.1038/nn.3094.
  Farooqi, I.S. and O'Rahilly, S. 2008. Mutations in ligands and receptors of the leptin‐melanocortin pathway that lead to obesity. Nat. Clin. Pract. Endocrinol. Metab. 4:569‐577. doi: 10.1038/ncpendmet0966.
  Felix‐Ortiz, A.C. and Tye, K.M. 2014. Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J. Neurosci. 34:586‐595. doi: 10.1523/JNEUROSCI.4257‐13.2014.
  Felix‐Ortiz, A.C., Beyeler, A., Seo, C., Leppla, C.A., Wildes, C.P., and Tye, K.M. 2013. BLA to vHPC inputs modulate anxiety‐related behaviors. Neuron 79:658‐664. doi: 10.1016/j.neuron.2013.06.016.
  Felix‐Ortiz, A.C., Burgos‐Robles, A., Bhagat, N.D., Leppla, C.A., and Tye, K.M. 2016. Bidirectional modulation of anxiety‐related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 321:197‐209. doi:10.1016/j.neuroscience.2015.07.041.
  Fenno, L., Yizhar, O., and Deisseroth, K. 2011. The development and application of optogenetics. Annu. Rev. Neurosci. 34:389‐412. doi: 10.1146/annurev‐neuro‐061010‐113817.
  Ferenczi, E.A., Zalocusky, K.A., Liston, C., Grosenick, L., Warden, M.R., Amatya, D., Katovich, K., Mehta, H., Patenaude, B., Ramakrishnan, C., Kalanithi, P., Etkin, A., Knutson, B., Glover, G.H., and Deisseroth, K. 2016. Prefrontal cortical regulation of brainwide circuit dynamics and reward‐related behavior. Science 351:aac9698. doi: 10.1126/science.aac9698.
  Fitzsimons, H.L., Bland, R.J., and During, M.J. 2002. Promoters and regulatory elements that improve adeno‐associated virus transgene expression in the brain. Methods 28:227‐236. doi: 10.1016/S1046‐2023(02)00227‐X.
  Flytzanis, N.C., Bedbrook, C.N., Chiu, H., Engqvist, M.K., Xiao, C., Chan, K.Y., Sternberg, P.W., Arnold, F.H., and Gradinaru, V. 2014. Archaerhodopsin variants with enhanced voltage‐sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat. Commun. 5:4894. doi: 10.1038/ncomms5894.
  Gerits, A. and Vanduffel, W. 2013. Optogenetics in primates: A shining future? Trends. Genet. 29:403‐411. doi: 10.1016/j.tig.2013.03.004.
  Goldberg, D. 2011. The heterogeneity of “major depression”. World Psychiatry 10: 226‐228. doi: 10.1002/j.2051‐5545.2011.tb00061.x.
  Goshen, I. 2014. The optogenetic revolution in memory research. Trends. Neurosci. 37:511‐522. doi: 10.1016/j.tins.2014.06.002.
  Goshen, I., Brodsky, M., Prakash, R., Wallace, J., Gradinaru, V., Ramakrishnan, C., and Deisseroth, K. 2011. Dynamics of retrieval strategies for remote memories. Cell 147:678‐689. doi: 10.1016/j.cell.2011.09.033.
  Govorunova, E.G., Sineshchekov, O.A., Janz, R., Liu, X., and Spudich, J.L. 2015. Natural light‐gated anion channels: A family of microbial rhodopsins for advanced optogenetics. Science 349:647‐650. doi: 10.1126/science.aaa7484.
  Gradinaru, V., Thompson, K.R., and Deisseroth, K. 2008. eNpHR: A Natronomonas halorhodopsin enhanced for optogenetic applications. Brain. Cell Biol. 36:129‐139. doi: 10.1007/s11068‐008‐9027‐6.
  Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M., and Deisseroth, K. 2009. Optical deconstruction of parkinsonian neural circuitry. Science 324:354‐359. doi: 10.1126/science.1167093.
  Gradinaru, V., Zhang, F., Ramakrishnan, C., Mattis, J., Prakash, R., Diester, I., Goshen, I., Thompson, K.R., and Deisseroth, K. 2010. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154‐165. doi: 10.1016/j.cell.2010.02.037.
  Gunaydin, L.A., Yizhar, O., Berndt, A., Sohal, V.S., Deisseroth, K., and Hegemann, P. 2010. Ultrafast optogenetic control. Nat. Neurosci. 13:387‐392. doi: 10.1038/nn.2495.
  Gunaydin, L.A., Grosenick, L., Finkelstein, J.C., Kauvar, I.V., Fenno, L.E., Adhikari, A., Lammel, S., Mirzabekov, J.J., Airan, R.D., Zalocusky, K.A., Tye, K.M., Anikeeva, P., Malenka, R.C., and Deisseroth, K. 2014. Natural neural projection dynamics underlying social behavior. Cell 157:1535‐1551. doi: 10.1016/j.cell.2014.05.017.
  Halassa, M.M., Siegle, J.H., Ritt, J.T., Ting, J.T., Feng, G., and Moore, C.I. 2011. Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat. Neurosci. 14:1118‐1120. doi: 10.1038/nn.2880.
  Han, X., Qian, X., Bernstein, J.G., Zhou, H.H., Franzesi, G.T., Stern, P., Bronson, R.T., Graybiel, A.M., Desimone, R., and Boyden, E.S. 2009. Millisecond‐timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62:191‐198. doi: 10.1016/j.neuron.2009.03.011.
  Hennigan, K., D'Ardenne, K., and McClure, S.M. 2015. Distinct midbrain and habenula pathways are involved in processing aversive events in humans. J. Neurosci. 35:198‐208. doi: 10.1523/JNEUROSCI.0927‐14.2015.
  Hyman, S.E. 2007. Can neuroscience be integrated into the DSM‐V? Nat. Rev. Neurosci. 8:725‐732. doi: 10.1038/nrn2218.
  Inglés‐Prieto, Á., Reichhart, E., Muellner, M.K., Nowak, M., Nijman, S.M., Grusch, M., and Janovjak, H. 2015. Light‐assisted small‐molecule screening against protein kinases. Nat. Chem. Biol. 11:952‐954. doi: 10.1038/nchembio.1933.
  Insel, T.R. and Cuthbert, B.N. 2015. Brain disorders? Precisely. Science 348:499‐500. doi: 10.1126/science.aab2358.
  Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D.S., Quinn, K., Sanislow, C., and Wang, P. 2010. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167:748‐751. doi: 10.1176/appi.ajp.2010.09091379.
  Iwai, Y., Honda, S., Ozeki, H., Hashimoto, M., and Hirase, H. 2011. A simple head‐mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci. Res. 70:124‐127. doi: 10.1016/j.neures.2011.01.007.
  Iyer, S.M., Montgomery, K.L., Towne, C., Lee, S.Y., Ramakrishnan, C., Deisseroth, K., and Delp, S.L. 2014. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat. Biotechnol. 32:274‐278. doi: 10.1038/nbt.2834.
  Janak, P.H. and Tye, K.M. 2015. From circuits to behaviour in the amygdala. Nature 517:284‐292. doi: 10.1038/nature14188.
  Jennings, J.H., Rizzi, G., Stamatakis, A.M., Ung, R.L., and Stuber, G.D. 2013a. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341:1517‐1521. doi: 10.1126/science.1241812.
  Jennings, J.H., Sparta, D.R., Stamatakis, A.M., Ung, R.L., Pleil, K.E., Kash, T.L., and Stuber, G.D. 2013b. Distinct extended amygdala circuits for divergent motivational states. Nature 496:224‐228. doi: 10.1038/nature12041.
  Johansen, J.P., Wolff, S.B., Lüthi, A., and LeDoux, J.E. 2012. Controlling the elements: An optogenetic approach to understanding the neural circuits of fear. Biol. Psychiatry 71:1053‐1060. doi: 10.1016/j.biopsych.2011.10.023.
  Kaplitt, M.G., Feigin, A., Tang, C., Fitzsimons, H.L., Mattis, P., Lawlor, P.A., Bland, R.J., Young, D., Strybing, K., Eidelberg, D., and During, M.J. 2007. Safety and tolerability of gene therapy with an adeno‐associated virus (AAV) borne GAD gene for Parkinson's disease: An open label, phase I trial. Lancet 369:2097‐2105. doi: 10.1016/S0140‐6736(07)60982‐9.
  Karunarathne, W.K., O'Neill, P.R., and Gautam, N. 2015. Subcellular optogenetics ‐ controlling signaling and single‐cell behavior. J. Cell Sci. 128:15‐25. doi: 10.1242/jcs.154435.
  Kim, A., Latchoumane, C., Lee, S., Kim, G.B., Cheong, E., Augustine, G.J., and Shin, H.S. 2012. Optogenetically induced sleep spindle rhythms alter sleep architectures in mice. Proc. Natl. Acad Sci. U. S. A. 109:20673‐20678. doi: 10.1073/pnas.1217897109.
  Kim, S.Y., Adhikari, A., Lee, S.Y., Marshel, J.H., Kim, C.K., Mallory, C.S., Lo, M., Pak, S., Mattis, J., Lim, B.K., Malenka, R.C., Warden, M.R., Neve, R., Tye, K.M., and Deisseroth, K. 2013. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496:219‐223. doi: 10.1038/nature12018.
  Kim, T., McCall, J.G., Jung, Y.H., Huang, X., Siuda, E.R., Li, Y., Song, J., Song, Y.M., Pao, H.A., Kim, R.H., Lu, C., Lee, S.D., Song, I.S., Shin, G., Al‐Hasani, R., Kim, S., Tan, M.P., Huang, Y., Omenetto, F.G., Rogers, J.A., and Bruchas, M.R. 2013. Injectable, cellular‐scale optoelectronics with applications for wireless optogenetics. Science 340:211‐216. doi: 10.1126/science.1232437.
  Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey‐Benson, A., Cho, Y.K., Morimoto, T.K., Chuong, A.S., Carpenter, E.J., Tian, Z., Wang, J., Xie, Y., Yan, Z., Zhang, Y., Chow, B.Y., Surek, B., Melkonian, M., Jayaraman, V., Constantine‐Paton, M., Wong, G.K., and Boyden, E.S. 2014. Independent optical excitation of distinct neural populations. Nat. Methods 11:338‐346. doi: 10.1038/nmeth.2836.
  Krashes, M.J. and Kravitz, A.V. 2014. Optogenetic and chemogenetic insights into the food addiction hypothesis. Front. Behav. Neurosci. 8:57. doi: 10.3389/fnbeh.2014.00057.
  Kravitz, A.V., Freeze, B.S., Parker, P.R., Kay, K., Thwin, M.T., Deisseroth, K., and Kreitzer, A.C. 2010. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622‐626. doi: 10.1038/nature09159.
  Krook‐Magnuson, E., Armstrong, C., Oijala, M., and Soltesz, I. 2013. On‐demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4:1376. doi: 10.1038/ncomms2376.
  Lammel, S., Lim, B.K., Ran, C., Huang, K.W., Betley, M.J., Tye, K.M., Deisseroth, K., and Malenka, R.C. 2012. Input‐specific control of reward and aversion in the ventral tegmental area. Nature 491:212‐217. doi: 10.1038/nature11527.
  Lammel, S., Lim, B.K., and Malenka, R.C. 2014a. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76(Part B):351‐359. doi: 10.1016/j.neuropharm.2013.03.019.
  Lammel, S., Tye, K.M., and Warden, M.R. 2014b. Progress in understanding mood disorders: optogenetic dissection of neural circuits. Genes Brain Behav. 13:38‐51. doi: 10.1111/gbb.12049.
  Lee, B.R., Ma, Y.Y., Huang, Y.H., Wang, X., Otaka, M., Ishikawa, M., Neumann, P.A., Graziane, N.M., Brown, T.E., Suska, A., Guo, C., Lobo, M.K., Sesack, S.R., Wolf, M.E., Nestler, E.J., Shaham, Y., Schlüter, O.M., and Dong, Y. 2013. Maturation of silent synapses in amygdala‐accumbens projection contributes to incubation of cocaine craving. Nat. Neurosci. 16:1644‐1651. doi: 10.1038/nn.3533.
  Lin, J.Y., Lin, M.Z., Steinbach, P., and Tsien, R.Y. 2009. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96:1803‐1814. doi: 10.1016/j.bpj.2008.11.034.
  Liske, H., Towne, C., Anikeeva, P., Zhao, S., Feng, G., Deisseroth, K., and Delp, S. 2013. Optical inhibition of motor nerve and muscle activity in vivo. Muscle Nerve 47:916‐921. doi: 10.1002/mus.23696.
  Llewellyn, M.E., Thompson, K.R., Deisseroth, K., and Delp, S.L. 2010. Orderly recruitment of motor units under optical control in vivo. Nat. Med. 16:1161‐1165. doi: 10.1038/nm.2228.
  Lobo, M.K., Covington, H.E. III, Chaudhury, D., Friedman, A.K., Sun, H., Damez‐Werno, D., Dietz, D.M., Zaman, S., Koo, J.W., Kennedy, P.J., Mouzon, E., Mogri, M., Neve, R.L., Deisseroth, K., Han, M.H., and Nestler, E.J. 2010. Cell type‐specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:385‐390. doi: 10.1126/science.1188472.
  Marton, T.F. and Sohal, V.S. 2016. Of mice, men, and microbial opsins: How optogenetics can help hone mouse models of mental illness. Biol. Psychiatry 79:47‐52. doi: 10.1016/j.biopsych.2015.04.012.
  Matthews, G.A., Nieh, E.H., Vander Weele, C.M., Halbert, S.A., Pradhan, R.V., Yosafat, A.S., Glober, G.F., Izadmehr, E.M., Thomas, R.E., Lacy, G.D., Wildes, C.P., Ungless, M.A., and Tye, K.M. 2016. Dorsal raphe dopamine neurons represent the experience of social isolation. Cell 164:617‐631. doi: 10.1016/j.cell.2015.12.040.
  Mattis, J., Tye, K.M., Ferenczi, E.A., Ramakrishnan, C., O'Shea, D.J., Prakash, R., Gunaydin, L.A., Hyun, M., Fenno, L.E., Gradinaru, V., Yizhar, O., and Deisseroth, K. 2011. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9:159‐172. doi: 10.1038/nmeth.1808.
  McIsaac, R.S., Bedbrook, C.N., and Arnold, F.H. 2015. Recent advances in engineering microbial rhodopsins for optogenetics. Curr. Opin. Struct. Biol. 33:8‐15. doi: 10.1016/j.sbi.2015.05.001.
  Miyashita, T., Shao, Y.R., Chung, J., Pourzia, O., and Feldman, D.E. 2013. Long‐term channelrhodopsin‐2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front. Neural Circuits 7:8. doi: 10.3389/fncir.2013.00008.
  Montgomery, K.L., Yeh, A.J., Ho, J.S., Tsao, V., Mohan Iyer, S., Grosenick, L., Ferenczi, E.A., Tanabe, Y., Deisseroth, K., Delp, S.L., and Poon, A.S. 2015. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12:969‐974. doi: 10.1038/nmeth.3536.
  Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., and Bamberg, E. 2003. Channelrhodopsin‐2, a directly light‐gated cation‐selective membrane channel. Proc. Natl. Acad Sci. U. S. A. 100:13940‐13945. doi: 10.1073/pnas.1936192100.
  Naldini, L. 2015. Gene therapy returns to centre stage. Nature 526:351‐360. doi: 10.1038/nature15818.
  Nash, K.R. and Gordon MN. 2016. Convection enhanced delivery of recombinant adeno‐associated virus into the mouse brain. Methods Mol. Biol. 1382:285‐295. doi: 10.1007/978‐1‐4939‐3271‐9_21.
  Nestler, E.J. 2010. Cell type‐specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:385‐390. doi: 10.1126/science.1188472.
  Nestler, E.J. and Hyman, S.E. 2010. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13: 1161‐1169. doi: 10.1038/nn.2647.
  Nieh, E.H., Kim, S.Y., Namburi, P., and Tye, K.M. 2013. Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors. Brain Res. 1511:73‐92. doi: 10.1016/j.brainres.2012.11.001.
  O'Connor, E.C., Kremer, Y., Lefort, S., Harada, M., Pascoli, V., Rohner, C., and Lüscher, C. 2015. Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron 88:553‐564. doi: 10.1016/j.neuron.2015.09.038.
  Pascoli, V., Terrier, J., Espallergues, J., Valjent, E., O'Connor, E.C., and Lüscher, C. 2014. Contrasting forms of cocaine‐evoked plasticity control components of relapse. Nature 509:459‐464. doi: 10.1038/nature13257.
  Paz, J.T., Davidson, T.J., Frechette, E.S., Delord, B., Parada, I., Peng, K., Deisseroth, K., and Huguenard, J.R. 2013. Closed‐loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16:64‐70. doi: 10.1038/nn.3269.
  Prakash, R., Yizhar, O., Grewe, B., Ramakrishnan, C., Wang, N., Goshen, I., Packer, A.M., Peterka, D.S., Yuste, R., Schnitzer, M.J., and Deisseroth, K. 2012. Two‐photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9:1171‐1179. doi: 10.1038/nmeth.2215.
  Rolls, A., Colas, D., Adamantidis, A., Carter, M., Lanre‐Amos, T., Heller, H.C., and de Lecea, L. 2011. Optogenetic disruption of sleep continuity impairs memory consolidation. Proc. Natl. Acad Sci. U. S. A. 108:13305‐13310. doi: 10.1073/pnas.1015633108.
  Royer, S., Zemelman, B.V., Barbic, M., Losonczy, A., Buzsáki, G., and Magee, J.C. 2010. Multi‐array silicon probes with integrated optical fibers: Light‐assisted perturbation and recording of local neural circuits in the behaving animal. Eur. J. Neurosci. 31:2279‐2291. doi: 10.1111/j.1460‐9568.2010.07250.x.
  Seif, T., Chang, S.J., Simms, J.A., Gibb, S.L., Dadgar, J., Chen, B.T., Harvey, B.K., Ron, D., Messing, R.O., Bonci, A., and Hopf, F.W. 2013. Cortical activation of accumbens hyperpolarization‐active NMDARs mediates aversion‐resistant alcohol intake. Nat. Neurosci. 16:1094‐1100. doi: 10.1038/nn.3445.
  Siegle, J.H., Carlen, M., Meletis, K., Tsai, L.H., Moore, C.I., and Ritt, J. 2011. Chronically implanted hyperdrive for cortical recording and optogenetic control in behaving mice. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011:7529‐7532. doi: 10.1109/IEMBS.2011.6091856.
  Sohal, V.S., Zhang, F., Yizhar, O., and Deisseroth, K. 2009. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698‐702. doi: 10.1038/nature07991.
  Song, C. and Knöpfel, T. 2016. Optogenetics enlightens neuroscience drug discovery. Nat. Rev. Drug. Discov. 15:97‐109. doi: 10.1038/nrd.2015.15.
  Stamatakis, A.M., Van Swieten, M., Basiri, M.L., Blair, G.A., Kantak, P., and Stuber, G.D. 2016. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. J. Neurosci. 36:302‐311. doi: 10.1523/JNEUROSCI.1202‐15.2016.
  Steinbeck, J.A., Choi, S.J., Mrejeru, A., Ganat, Y., Deisseroth, K., Sulzer, D., Mosharov, E.V., and Studer, L. 2015. Optogenetics enables functional analysis of human embryonic stem cell‐derived grafts in a Parkinson's disease model. Nat. Biotechnol. 33:204‐209. doi: 10.1038/nbt.3124.
  Steinberg, E.E., Christoffel, D.J., Deisseroth, K., and Malenka, R.C. 2015. Illuminating circuitry relevant to psychiatric disorders with optogenetics. Curr. Opin. Neurobiol. 30:9‐16. doi: 10.1016/j.conb.2014.08.004.
  Strickland, D., Lin, Y., Wagner, E., Hope, C.M., Zayner, J., Antoniou, C., Sosnick, T.R., and Weiss, E.L., Glotzer, M. 2012. TULIPs: Tunable, light‐controlled interacting protein tags for cell biology. Nat. Methods 9:379‐384. doi: 10.1038/nmeth.1904.
  Szobota, S., Gorostiza, P., Del Bene, F., Wyart, C., Fortin, D.L., Kolstad, K.D., Tulyathan, O., Volgraf, M., Numano, R., Aaron, H.L., Scott, E.K., Kramer, R.H., Flannery, J., Baier, H., Trauner, D., and Isacoff, E.Y. 2007. Remote control of neuronal activity with a light‐gated glutamate receptor. Neuron 54:535‐545. doi: 10.1016/j.neuron.2007.05.010.
  Terraneo, A., Leggio, L., Saladini, M., Ermani, M., Bonci, A., and Gallimberti, L. 2016. Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study. Eur. Neuropsychopharmacol. 26:37‐44. doi: 10.1016/j.euroneuro.2015.11.011.
  Tomita, H., Sugano, E., Isago, H., Hiroi, T., Wang, Z., Ohta, E., and Tamai, M. 2010. Channelrhodopsin‐2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp. Eye Res. 90:429‐436. doi: 10.1016/j.exer.2009.12.006.
  Tonegawa, S., Liu, X., Ramirez, S., and Redondo, R. 2015. Memory engram cells have come of age. Neuron 87:918‐931. doi: 10.1016/j.neuron.2015.08.002.
  Touriño, C., Eban‐Rothschild, A., and de Lecea, L. 2013. Optogenetics in psychiatric diseases. Curr. Opin. Neurobiol. 23:430‐435. doi: 10.1016/j.conb.2013.03.007.
  Tovote, P., Fadok, J.P., and Lüthi, A. 2015. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16:317‐331. doi: 10.1038/nrn3945.
  Towne, C., Pertin, M., Beggah, A.T., Aebischer, P., and Decosterd, I. 2009. Recombinant adeno‐associated virus serotype 6 (rAAV2/6)‐mediated gene transfer to nociceptive neurons through different routes of delivery. Mol. Pain 5:52. doi: 10.1186/1744‐8069‐5‐52.
  Towne, C., Montgomery, K.L., Iyer, S.M., Deisseroth, K., and Delp, S.L. 2013. Optogenetic control of targeted peripheral axons in freely moving animals. PLoS One. 8:e72691. doi: 10.1371/journal.pone.0072691.
  Tsai, H.C., Zhang, F., Adamantidis, A., Stuber, G.D., Bonci, A., de Lecea, L., and Deisseroth, K. 2009. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:1080‐1084. doi: 10.1126/science.1168878.
  Tye, K.M. and Deisseroth, K. 2012. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13:251‐266. doi: 10.1038/nrn3171.
  Tye, K.M., Prakash, R., Kim, S.Y., Fenno, L.E., Grosenick, L., Zarabi, H., Thompson, K.R., Gradinaru, V., Ramakrishnan, C., and Deisseroth, K. 2011. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471:358‐362. doi: 10.1038/nature09820.
  van Wyk, M., Pielecka‐Fortuna, J., Löwel, S., and Kleinlogel, S. 2015. Restoring the ON switch in blind retinas: Opto‐mGluR6, a next‐generation, cell‐tailored optogenetic tool. PLoS Biol. 13:e1002143. doi: 10.1371/journal.pbio.1002143.
  Vogt, C.C., Bruegmann, T., Malan, D., Ottersbach, A., Roell, W., Fleischmann, B.K., and Sasse, P. 2015. Systemic gene transfer enables optogenetic pacing of mouse hearts. Cardiovasc. Res. 106:338‐343. doi: 10.1093/cvr/cvv004.
  Wang, J., Wagner, F., Borton, D.A., Zhang, J., Ozden, I., Burwell, R.D., Nurmikko, A.V., van Wagenen, R., Diester, I., and Deisseroth, K. 2012. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J. Neural. Eng. 9:016001. doi: 10.1088/1741‐2560/9/1/016001.
  Wang, G., Wyskiel, D.R., Yang, W., Wang, Y., Milbern, L.C., Lalanne, T., Jiang, X., Shen, Y., Sun, Q.Q., and Zhu, J.J. 2015. An optogenetics‐ and imaging‐assisted simultaneous multiple patch‐clamp recording system for decoding complex neural circuits. Nat. Protoc. 10:397‐412. doi: 10.1038/nprot.2015.019.
  Warden, M.R., Selimbeyoglu, A., Mirzabekov, J.J., Lo, M., Thompson, K.R., Kim, S.Y., Adhikari, A., Tye, K.M., Frank, L.M., and Deisseroth, K. 2012. A prefrontal cortex‐brainstem neuronal projection that controls response to behavioural challenge. Nature 492:428‐432. doi: 10.1038/nature11617.
  Wietek, J., Wiegert, J.S., Adeishvili, N., Schneider, F., Watanabe, H., Tsunoda, S.P., Vogt, A., Elstner, M., Oertner, T.G., and Hegemann, P. 2014. Conversion of channelrhodopsin into a light‐gated chloride channel. Science 344:409‐412. doi: 10.1126/science.1249375.
  Witten, I.B., Lin, S.C., Brodsky, M., Prakash, R., Diester, I., Anikeeva, P., Gradinaru, V., Ramakrishnan, C., and Deisseroth, K. 2010. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330:1677‐1681. doi: 10.1126/science.1193771.
  Wykes, R.C., Heeroma, J.H., Mantoan, L., Zheng, K., MacDonald, D.C., Deisseroth, K., Hashemi, K.S., Walker, M.C., Schorge, S., and Kullmann, D.M. 2012. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci. Transl. Med. 4:161ra152. doi: 10.1126/scitranslmed.3004190.
  Wykes, R.C., Kullmann, D.M., Pavlov, I., and Magloire, V. 2016. Optogenetic approaches to treat epilepsy. J. Neurosci. Methods 260:215‐220. doi: 10.1016/j.jneumeth.2015.06.004.
  Yizhar, O. 2012. Optogenetic insights into social behavior function. Biol. Psychiatry 71:1075‐1080. doi: 10.1016/j.biopsych.2011.12.029.
  Yizhar, O., Fenno, L.E., Prigge, M., Schneider, F., Davidson, T.J., O'Shea, D.J., Sohal, V.S., Goshen, I., Finkelstein, J., Paz, J.T., Stehfest, K., Fudim, R., Ramakrishnan, C., Huguenard, J.R., Hegemann, P., and Deisseroth, K. 2011. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171‐178. doi: 10.1038/nature10360.
  Yoon, H.H., Park, J.H., Kim, Y.H., Min, J., Hwang, E., Lee, C.J., Suh, J.K., Hwang, O., and Jeon, S.R. 2014. Optogenetic inactivation of the subthalamic nucleus improves forelimb akinesia in a rat model of Parkinson disease. Neurosurgery 74:533‐540. doi: 10.1227/NEU.0000000000000297.
  Zhang, F., Wang, L.P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., Wood, P.G., Bamberg, E., Nagel, G., Gottschalk, A., and Deisseroth, K. 2007. Multimodal fast optical interrogation of neural circuitry. Nature 446:633‐639. doi: 10.1038/nature05744.
  Zhang, F., Prigge, M., Beyrière, F., Tsunoda, S.P., Mattis, J., Yizhar, O., Hegemann, P., and Deisseroth, K. 2008. Red‐shifted optogenetic excitation: A tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11:631‐633. doi: 10.1038/nn.2120.
  Zorzos, A.N., Boyden, E.S., and Fonstad, C.G. 2010. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt. Lett. 35:4133‐4135. doi: 10.1364/OL.35.004133.
  Zorzos, A.N., Scholvin, J., Boyden, E.S., and Fonstad, C.G. 2012. Three‐dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt. Lett. 37:4841‐4843. doi: 10.1364/OL.37.004841.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library