Overview of Anti‐Infective Drug Development

John F. Barrett1

1 Merck Research Laboratories, Rahway, New Jersey
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 13A.1
DOI:  10.1002/0471141755.ph13a01s31
Online Posting Date:  January, 2006
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The identification and clinical development of an antibiotic as a new chemical entity (NCE) can take up to a decade to complete. The goal of this effort is to identify agents that inhibit and/or kill pathogenic bacteria. Outlined in this unit is a series of key “strategic protocols” utilized for drug development in this area. Included are the identification of the target and the hit/lead, as well as lead optimization for identifying a clinical candidate. The clinical development of a new antimicrobial agent can take 5 to 7 years to complete, depending on the clinical plan. This unit is designed to provide an overview of key aspects of antibacterial drug development and provide an introduction for subsequent units in this chapter that provide more detailed protocols for identifying and testing antimicrobial drugs.

Keywords: antibacterials; antibiotics; drug discovery; hit; lead; candidate; antibacterial drug discovery; antimicrobial spectrum; bacterial genomics

PDF or HTML at Wiley Online Library

Table of Contents

  • Exploratory Phase
  • Early Phase
  • Lead Optimization
  • Candidate Selection
  • Preclinical Profiling
  • Clinical Development
  • Regulatory Filing
  • Approval and Launch
  • Strategic Planning
  • Summary
  • Literature Cited
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Acred, P. 1986. The Selbie or thigh lesion test. In Experimental Models in Antimicrobial Chemotherapy (O. Zak and M.A. Sande, eds) pp. 109‐121. Academic Press, London.
   Arigoni, F., Talabot, F., Peitsch, M., Edgerton, M.D., Meldrum, E., Allet, E., Fish R., Jamotte, T., Curchod, M.L., and Loferer, H. 1998. A genome‐based approach for the identification of essential bacterial genes. Nat. Biotechnol. 3:483‐489.
   Barrett, C.T. and Barrett, J.F. 2003. Antibacterials: Are the new entries enough to deal with the emerging resistance problems? Curr. Opin. Biotechnol. 14:1‐6.
   Bergeron, M.G. 1978. A review of models for the therapy of experimental infections. Scand. J. Infect. Dis. 14:189‐206.
   Beyer, D., Kroll, H.P., Endermann, R., Schiffer, G., Siegel, S., Bauser, M., Pohlmann, J., Brands, M., Ziegelbauer, K., Haebich, D., Eymann, C., and Brotz‐Oesterhelt, H. 2004. New class of bacterial phenylalanyl‐tRNA synthetase inhibitors with high potency and broad‐spectrum activity. Antimicrob. Agents Chemother. 48:525‐532.
   Bleicher, K.H., Bohm, H.J., Muller, K., and Alanine, A.I. 2003. Hit and lead generation: Beyond high‐throughput screening. Nat. Rev. Drug Discov. 2:369‐378.
   Chalker, A.F. and Lunsford, R.D. 2002. Rational identification of new antibacterial drug targets that are essential for viability using a genomics‐based approach. Pharmacol. Ther. 95:1‐20.
   DeVito, J.A., Mills, J.A., Liu, V.G., Agarwal, A., Sizemore, C.F., Yao, Z., Stoughton, D.M., Cappiello, M.G., Barbosa, M.D.F.S., Foster, L.A., and Pompliano, D.L. 2002. An array of target‐specific screening strains for antibacterial discovery. Nat. Biotechnol. 20:478‐483.
   DiMasi, J.A., Hansen, R.W., and Grabowski, H.G. 2003. The price of innovation: New estimates of drug development costs. J. Health Econ. 22:151‐185.
   Dougherty, T.J., Barrett, J.F., and Pucci, M.J. 2002. Microbial genomics and novel antibiotic discovery: New technology to search for new drugs. Curr. Pharm. Des. 8:1119‐1135.
   Fernandez, J., Barrett, J.F., Licata, L., Amaratunga, D., and Frosco, M. 1999. Comparison of efficacies of oral levofloxacin and oral ciprofloxacin in a rabbit model of a staphylococcal abscess. Antimicrob. Agents Chemother. 43:667‐671.
   Haney, S.A., Alkane, L.E., Dunman, P.M., Murphy, E., and Projan, S.J. 2002. Genomics in anti‐infective drug discovery – getting to endgame. Curr. Pharm. Des. 8:1099‐1118.
   Judson, N. and Mekalanos, J.J. 2000. Transposon‐based approaches to identify essential bacterial genes. Nat. Biotechnol. 18:740‐745.
   Lindsay, M.A. 2004. Target discovery. Nat. Rev. Drug Discov. 2:831‐837.
   Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3‐25.
   Look, G.C., Vacin, C., Dias, T.M., Ho, S., Tran, T.H., Wiesner, C., Fang, F., Marra, A., Westamacott, D., Hromockyj, A.E., Murpy, M.M., and Schullel, J.R. 2004. The discovery of biaryl acids and amides exhibiting antibacterial activity against Gram‐positive bacteria. Bioorg. Med. Chem. Lett. 14:1423‐1426.
   McDevitt, D. and Rosenberg, M. 2001. Exploiting genomics to discover new antibiotics. Trends Microbiol. 9:611‐617.
   Mills, S.D. 2003. The role of genomics in antimicrobial discovery. J. Antimicrob. Chemother. 51:749‐752.
   Milne, G.M. 2003. Pharmaceutical productivity: The imperative for new paradigms. Annu. Rep. Med. Chem. 38:383‐397.
   NCCLS (National Committee for Clinical Laboratory Standards). 1997. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7‐A4. National Committee for Clinical Laboratory Standards, Villanova, Pa.
   Nwaka, S. and Ridley, R.J. 2003. Virtual discovery and development for neglected diseases through public‐private partnerships. Nat. Rev. Drug Discov. 2:919‐928.
   Pucci, M.J., Barrett, J.F., and Dougherty, T.J. 2003. Bacterial “Genes‐To‐Screens” in the post‐genomic era. In Pathogen Genomics: Impact on Human Health (K. J. Shaw, ed.). Humana Press, Totowa, N.J.
   Pratt, S.D., David, C.A., Black‐Schaefer, C., Dandliker, P.J., Xuei, X.L., Warrior, X., Burns, D.J., Zhong, P., Cao, Z.S., Saiki, A.Y.C., Lerner, C.G., Chovan, L.E., Soni, N.B., Nilius, A.M., Wagenaar, F.L., Merta, P.J., Traphagen, L.M., and Beutel, B.A. 2004. A strategy for discovery of novel broad‐spectrum antibacterials using a high‐throughput Streptococcus pneumoniae transcription/translation screen. J. Biomol. Screen. 9:3‐11.
   Rich, A. 2004. The excitement of discovery. Annu. Rev. Biochem. 73:1‐37.
   Silver, L. and Bostian, K. 1990. Screening of natural products for antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 9:455‐461.
   Thanassi, J.A., Hartman‐Neumann, S.L., Dougherty, T.J., Dougherty, B.A. and Pucci, M.J. 2002. Identification of 113 conserved essential genes using a high‐throughput gene disruption system in Streptococcus pneumoniae. Nucl. Acids Res. 30:3152‐3162.
   Xuan, D., Zhong, M., Mattoes, H., Bui, K.‐Q., McNabb, J., Nicolau, D., Quintilliani, R., and Nightingale, C.H. 2001. Streptococcus pneumoniae response to repeated moxifloxacin or levofloxacin exposure in a rabbit tissue cage model. Antimicrob. Agents Chemother. 45:794‐799.
PDF or HTML at Wiley Online Library