Murine and Canine Models of Appendicular Osteosarcoma

Timothy M. Fan1

1 University of Illinois at Urbana‐Champaign, Urbana, Illinois
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 14.1
DOI:  10.1002/0471141755.ph1401s37
Online Posting Date:  June, 2007
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Appendicular osteosarcoma (OSA) is a primary bone sarcoma affecting humans during their second decade of life. Despite aggressive surgical and chemotherapeutic interventions, 30% of patients will experience progressive metastatic disease within 5 years of diagnosis. Understanding the biology of pediatric OSA and potential targets for therapeutic development remains an area of focus for both basic scientists and clinical oncologists. The identification and study of relevant comparative tumor models in mice and canines may allow for a better understanding of OSA biology, and permit the rapid investigation of novel therapeutic strategies for managing this metastatic bone sarcoma. This unit provides a protocol for using an orthotopic, syngeneic murine model of appendicular OSA as an investigative tool for the study of OSA biology. Additionally, the comparative relevance of spontaneously occurring appendicular OSA in canines for the study of pediatric bone sarcomas is discussed.

Keywords: comparative tumor model; spontaneous disease; translational research; primary bone sarcoma; experimental therapeutics

PDF or HTML at Wiley Online Library

Table of Contents

  • Strategic Planning
  • Basic Protocol 1: Paraosteal Muscle Flap K7M2 Murine OSA Model
  • Basic Protocol 2: Spontaneous Canine Appendicular OSA Model
  • Alternate Protocol 1: Quantifying Biologic Response in OSA‐Bearing Dogs Treated with anticancer and antiresorptive therapies
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Paraosteal Muscle Flap K7M2 Murine OSA Model

  • K7M2 murine osteosarcoma cell line (ATCC)
  • Dulbecco's modified Eagle's medium (DMEM)
  • Fetal calf serum (FCS)
  • Penicillin/streptomycin (P/S)
  • L‐glutamine
  • Phosphate buffered saline (PBS), sterile
  • Trypsin‐EDTA
  • 0.4% trypan blue
  • Hanks' buffered salt solution (HBSS), phenol‐free
  • 4‐ to 5‐week‐old balb/c mice (Charles River Laboratories)
  • Betadine scrub solution
  • 70% ethanol
  • 0.9% (w/v) NaCl (i.e., saline), sterile and cold
  • Xylazine/ketamine cocktail (see recipe)
  • Isoflurane
  • Surgical tissue adhesive
  • 0.4 mg/ml buprenorphine hydrochloride (McKesson Corporate)
  • India ink solution (see recipe)
  • Fekete's solution (see recipe)
  • 37°C water bath
  • 25‐ or 75‐cm2 tissue‐culture flasks (Corning)
  • 37°C, 5% CO 2 cell culture incubator
  • 50‐ml conical tubes
  • Hemacytometer
  • Inverted microscope
  • Sterile 1‐ml syringes with 27‐G needles
  • Vernier calipers
  • CO 2 euthanasia chamber (AB‐2, Braintree Scientific)
  • Sterile scissors and forceps
  • Nose cone and anesthetic vaporizer (Braintree Scientific)
  • Surgical clippers
  • Sterile surgical supplies (Braintree Scientific)
  • Surgical wound clips
  • 4‐0 vicryl
  • Bone‐cutting forceps
  • 18‐G needles
  • Dissection microscope

Basic Protocol 2: Spontaneous Canine Appendicular OSA Model

  • Client‐owned dogs with spontaneously arising appendicular OSA
  • Osteomark NTx urine ELISA kit (Wampole Laboratories)
  • Intravenous catheters (18‐G)
  • 15‐ml conical tubes
  • Blood chemistry analyzer (Roche Hitachi 911, GMI)

Alternate Protocol 1: Quantifying Biologic Response in OSA‐Bearing Dogs Treated with anticancer and antiresorptive therapies

  • Pamidronate disodium (Bedford Laboratories)
  • 0.9% saline for injection, sterile
  • Betadine scrub
  • 70% ethanol
  • Doxorubicin hydrochloride (McKesson Corporate)
  • Butorphanol injectable (McKesson Corporate)
  • Medetomidine injectable (McKesson Corporate)
  • Atropine injectable (McKesson Corporate)
  • Atipamazole injectable (McKesson Corporate)
  • −80°C freezer
  • Venous catheter
  • Bandage tape
  • Intravenous fluid infusion pump
  • Megavoltage radiation source
PDF or HTML at Wiley Online Library



Literature Cited

   Barger, A.M., Fan, T.M., de Lorimier, L.P., Sprandel, I.T., and Anderson, K.O. 2007. Expression of receptor activator of nuclear factor κ‐B ligand (RANKL) in neoplasms of dogs and cats. J. Vet. Intern. Med. 21:133‐140.
   Bergman, P.J., McKnight, J., Novosad, A., Charney, S., Farrelly, J., Craft, D., Wulderk, M., Jeffers, Y., Sadelain, M., Hohenhaus, A.E., Segal, N., Gregor, P., Engelhorn, M., Riviere, I., Houghton, A.N., and Wolchok, J.D. 2003. Long‐term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: A phase I trial. Clin. Cancer Res. 9:1284‐1290.
   Berlin, O., Samid, D., Donthineni‐Rao, R., Akeson, W., Amiel, D., and Woods, V.L. Jr. 1993. Development of a novel spontaneous metastasis model of human osteosarcoma transplanted orthotopically into bone of athymic mice. Cancer Res. 53:4890‐4895.
   Berruti, A., Dogliotti, L., Osella, G., Cerutti, S., Reimondo, G., Martino, A., Gorzegno, G., Catolla, R., and Angeli, A. 2000. Evaluation by dual energy X‐ray absorptiometry of changed bone density in metastatic bone sites as a consequence of systemic treatment. Oncol. Rep. 7:777‐781.
   Chun, R. and de Lorimier, L.P. 2003. Update on the biology and management of canine osteosarcoma. Vet. Clin. North Am. Small Anim. Pract. 33:491‐516.
   Crnalic, S., Hakansson, I., Boquist, L., Lofvenberg, R., and Brostrom, L.A. 1997. A novel spontaneous metastasis model of human osteosarcoma developed using orthotopic transplantation of intact tumor tissue into tibia of nude mice. Clin. Exp. Metastasis 15:164‐172.
   Dow, S., Elmslie, R., Kurzman, I., MacEwen, G., Pericle, F., and Liggitt, D. 2005. Phase I study of liposome‐DNA complexes encoding the interleukin‐2 gene in dogs with osteosarcoma lung metastases. Hum. Gene Ther. 16:937‐946.
   Fan, T.M., de Lorimier, L.P., Charney, S.C., and Hintermeister, J.G. 2005. Evaluation of intravenous pamidronate administration in 33 cancer‐bearing dogs with primary or secondary bone involvement. J. Vet. Intern. Med. 19:74‐80.
   Felx, M., Guyot, M.C., Isler, M., Turcotte, R.E., Doyon, J., Khatib, A.M., Leclerc, S., Moreau, A., and Moldovan, F. 2006. Endothelin‐1 (ET‐1) promotes MMP‐2 and MMP‐9 induction involving the transcription factor NF‐kappaB in human osteosarcoma. Clin. Sci. 110:645‐654.
   Flint, A.F., U'Ren, L., Legare, M.E., Withrow, S.J., Dernell, W., and Hanneman, W.H. 2004. Overexpression of the erbB‐2 proto‐oncogene in canine osteosarcoma cell lines and tumors. Vet. Pathol. 41:291‐296.
   Goblirsch, M.J., Zwolak, P., and Clohisy, D.R. 2005. Advances in understanding bone cancer pain. J. Cell. Biochem. 96:682‐688.
   Gorlick, R., Anderson, P., Andrulis, I., Arndt, C., Beardsley, G.P., Bernstein, M., Bridge, J., Cheung, N.K., Dome, J.S., Ebb, D., Gardner, T., Gebhardt, M., Grier, H., Hansen, M., Healey, J., Helman, L., Hock, J., Houghton, J., Houghton, P., Huvos, A., Khanna, C., Kieran, M., Kleinerman, E., Ladanyi, M., Lau, C., Malkin, D., Marina, N., Meltzer, P., Meyers, P., Schofield, D., Schwartz, C., Smith, M.A., Toretsky, J., Tsokos, M., Wexler, L., Wigginton, J., Withrow, S., Schoenfeldt, M., and Anderson, B. 2003. Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: Meeting summary. Clin. Cancer Res. 9:5442‐5453.
   Grimaud, E., Soubigou, L., Couillaud, S., Coipeau, P., Moreau, A., Passuti, N., Gouin, F., Redini, F., and Heymann, D. 2003. Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am. J. Pathol. 163:2021‐2031.
   Hansen, K. and Khanna, C. 2004. Spontaneous and genetically engineered animal models: Use in preclinical cancer drug development. Eur. J. Cancer 40:858‐880.
   Henry, C.J., Buss, M.S., Hellstrom, I., Hellstrom, K.E., Brewer, W.G., Bryan, J.N., and Siegall, C.B. 2005. Clinical evaluation of BR96 sFv‐PE40 immunotoxin therapy in canine models of spontaneously occurring invasive carcinoma. Clin. Cancer Res. 11:751‐755.
   Jia, S.F., Worth, L.L., and Kleinerman, E.S. 1999. A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies. Clin. Exp. Metastasis 17:501‐506.
   Khanna, C., Anderson, P.M., Hasz, D.E., Katsanis, E., Neville, M., and Klausner, J.S. 1997. Interleukin‐2 liposome inhalation therapy is safe and effective for dogs with spontaneous pulmonary metastases. Cancer 79:1409‐1421.
   Khanna, C., Prehn, J., Yeung, C., Caylor, J., Tsokos, M., and Helman, L. 2000. An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin. Exp. Metastasis 18:261‐271.
   Khanna, C., Prehn, J., Hayden, D., Cassaday, R.D., Caylor, J., Jacob, S., Bose, S.M., Hong, S.H., Hewitt, S.M., and Helman, L.J. 2002. A randomized controlled trial of octreotide pamoate long‐acting release and carboplatin versus carboplatin alone in dogs with naturally occurring osteosarcoma: Evaluation of insulin‐like growth factor suppression and chemotherapy. Clin. Cancer Res. 8:2406‐2412.
   Khanna, C., Lindblad‐Toh, K., Vail, D., London, C., Bergman, P., Barber, L., Breen. M., Kitchell, B., McNeil, E., Modiano, J.F., Niemi, S., Comstock, K.E., Ostrander, E., Westmoreland, S., and Withrow, S. 2006. The dog as a cancer model. Nat. Biotechnol. 24:1065‐1066.
   Lacoste, H., Fan, T.M., de Lorimier, L.P., and Charney, S.C. 2006. Urine N‐telopeptide excretion in dogs with appendicular osteosarcoma. J. Vet. Intern. Med. 20:335‐341.
   Laverdiere, C. and Gorlick, R. 2006. CXCR4 expression in osteosarcoma cell lines and tumor samples: Evidence for expression by tumor cells. Clin. Cancer Res. 12:5254.
   London, C.A., Hannah, A.L., Zadovoskaya, R., Chien, M.B., Kollias‐Baker, C., Rosenberg, M., Downing, S., Post, G., Boucher, J., Shenoy, N., Mendel, D.B., McMahon, G., and Cherrington, J.M. 2003. Phase I dose‐escalating study of SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous malignancies. Clin. Cancer Res. 9:2755‐2768.
   MacEwen, E.G., Kutzke, J., Carew, J., Pastor, J., Schmidt, J.A., Tsan, R., Thamm, D.H., and Radinsky, R. 2003. c‐Met tyrosine kinase receptor expression and function in human and canine osteosarcoma cells. Clin. Exp. Metastasis 20:421‐430.
   Mack, G.S. 2005. Cancer researchers usher in dog days of medicine. Nat. Med. 11:1018.
   Mack, G.S. 2006. Clinical trials going to the dogs: Canine program to study tumor treatment, biology. J. Natl. Cancer Inst. 98:161‐162.
   Mansky, P.J., Liewehr, D.J., Steinberg, S.M., Chrousos, G.P., Avila, N.A., Long, L., Bernstein, D., Mackall, C.L., Hawkins, D. S., and Helman, L.J. 2002. Treatment of metastatic osteosarcoma with the somatostatin analog OncoLar: Significant reduction of insulin‐like growth factor‐1 serum levels. J. Pediatr. Hematol. Oncol. 24:440‐446.
   Matsuyama, S., Iwadate, M., Kondo, M., Saitoh, M., Hanyu, A., Shimizu, K., Aburatani, H., Mishima, H.K., Imamura, T., Miyazono, K., and Miyazawa, K. 2003. SB‐431542 and Gleevec inhibit transforming growth factor‐beta‐induced proliferation of human osteosarcoma cells. Cancer Res. 63:7791‐7798.
   Oda, Y., Yamamoto, H., Tamiya, S., Matsuda, S., Tanaka, K., Yokoyama, R., Iwamoto, Y., and Tsuneyoshi, M. 2006. CXCR4 and VEGF expression in the primary site and the metastatic site of human osteosarcoma: Analysis within a group of patients, all of whom developed lung metastasis. Mod. Pathol. 19:738‐745.
   Porrello, A., Cardelli, P., and Spugnini, E.P. 2004. Pet models in cancer research: General principles. J. Exp. Clin. Cancer Res. 23:181‐193.
   Porrello, A., Cardelli, P., and Spugnini, E.P. 2006. Oncology of companion animals as a model for humans. An overview of tumor histotypes. J. Exp. Clin. Cancer Res. 25:97‐105.
   Rusk, A., McKeegan, E., Haviv, F., Majest, S., Henkin, J., and Khanna, C. 2006. Preclinical evaluation of antiangiogenic thrombospondin‐1 peptide mimetics, ABT‐526 and ABT‐510, in companion dogs with naturally occurring cancers. Clin. Cancer Res. 12:7444‐7455.
   Schmidt, J., Strauss, G.P., Schon, A., Luz, A., Murray, A.B., Melchiori, A., Aresu, O., and Erfle, V. 1988. Establishment and characterization of osteogenic cell lines from a spontaneous murine osteosarcoma. Differentiation 39:151‐60.
   Thamm, D.H., Kurzman, I.D., King, I., Li, Z., Sznol, M., Dubielzig, R.R., Vail, D.M., and MacEwen, E.G. 2005. Systemic administration of an attenuated, tumor‐targeting Salmonella typhimurium to dogs with spontaneous neoplasia: Phase I evaluation. Clin. Cancer Res. 11:4827‐4834.
   Vail, D.M. and MacEwen, E.G. 2000. Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest. 18:781‐792.
   Wan, X., Mendoza, A., Khanna, C., and Helman, L.J. 2005. Rapamycin inhibits ezrin‐mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res. 65:2406‐2411.
   Withrow, S.J., Powers, B.E., Straw, R.C., and Wilkins, R.M. 1991. Comparative aspects of osteosarcoma. Dog versus man. Clin. Orthop. Relat. Res. 270:159‐168.
   Zhou, H., Randall, R.L., Brothman, A.R., Maxwell, T., Coffin, C.M., and Goldsby, R.E. 2003. Her‐2/neu expression in osteosarcoma increases risk of lung metastasis and can be associated with gene amplification. J. Pediatr. Hematol. Oncol. 25:27‐32.
Internet Resource
  Provides information about clinical oncology trials using dogs with spontaneously arising tumors as comparative models of human disease.
PDF or HTML at Wiley Online Library