Metastatic Model of Colon Carcinoma in Mice: Utility in the Study of Tumor Growth and Progression

Susan Jones‐Bolin1, Bruce Ruggeri1

1 Cephalon, Inc., West Chester, Pennsylvania
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 14.5
DOI:  10.1002/0471141755.ph1405s38
Online Posting Date:  September, 2007
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Colorectal cancer is the second leading cause of cancer deaths in the United States with an estimated 150,000 diagnosed cases and over 56,000 fatalities annually (Jemal et al., 2006). Approximately one‐third to one‐half of cases are localized to the colon and rectum and have a favorable prognosis, while one‐third to one‐half present with regional lymph node metastases at diagnosis and generally are refractory to various chemotherapeutic regimens. Treatment options (surgery, radiation, and chemotherapy) are limited and the disease carries a grave prognosis for many patients. An orthotopic model of colon carcinoma in mice provides a way to evaluate the pathogenesis of tumor growth and metastasis as an aid in developing effective therapies and to better understand the underlying biology of colon tumor growth and metastasis. The protocol described in this unit details the development and characterization of an orthotopic model of murine colon carcinoma in BALB/c mice with diffuse lymphatic and hepatic metastatic spread, closely mimicking the course of the human disease. Curr. Protoc. Pharmacol. 38:14.5.1‐14.5.13. © 2007 by John Wiley & Sons, Inc.

Keywords: colon carcinoma; athymic nude; BALB/c mice; orthotopic; metastasis

PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • CT‐26 murine colon carcinoma cell line obtained under a Materials Transfer Agreement (MTA) from Dr. James L. Abbruzzese, University of Texas (M. D. Anderson Cancer Center) or human colon carcinoma cell lines (such as HT‐29 or HCT‐116) from ATCC
  • Media for cell growth. This includes RPMI 1640 for the CT‐26 cell line, and MEM or McCoys 5a for the HT‐29 or HC‐116 cell lines (Gibco BRL)
  • 10% fetal bovine serum (FBS; Hyclone or ATCC)
  • Penicillin/streptomycin
  • Trypsin
  • 1× PBS
  • 6‐ to 8‐week‐old female (20 to 25 g) BALB/c mice (Charles River Labs) for the CT‐26 murine colon tumor cell line
  • 6‐ to 8‐week‐old female (20 to 25 g) athymic nude mice (Charles River Labs) for the human colon carcinoma cell lines (HT‐29 or HCT‐116)
  • Ketamine (100 mg/ml, 10 ml vial; Hanna Pharmaceutical Supply)
  • Xylazine (20 mg/ml, 20 ml vial; Webster Veterinary Supply)
  • Isoflurane
  • Surgical scrub (e.g., Nolvassan or betadine)
  • Saline: 0.9% (w/v) NaCl (sterile; VWR)
  • 5% CO 2 incubator
  • 50‐ml conical‐shaped centrifuge tube
  • Circulating water heating pad. (e.g., Gaymar T‐pump or similar product).
  • Sterile towels
  • Nose cone apparatus
  • Petri dishes, 70‐mm or larger diameter
  • Sterile gauze
  • Cordless rechargeable electric clippers (e.g., Wahl, Webster Veterinary Supply)
  • Sterile alcohol prep pads, medium (Nice Pak or Curity; VWR or Fisher Scientific)
  • Autoclave for sterilizing instruments, gauze sponges, wound clips
  • Two sets of surgical instruments including (VWR or Fine Science Tools):
    • 4.5‐inch Iris scissors, straight, sharp ends, sterile
    • 4.5‐inch tissue forceps, 1 × 2 teeth
    • 4.75‐inch Adson forceps or delicate dressing forceps, serrated
    • Suture: Vicryl 5/0 or 6/0 or PDS II 5/0, for closing peritoneal layer; one pack per five to ten mice (Webster Veterinary Supply)
    • 9‐mm wound clips, with applier and remover (VWR)
    • Disposable scalpels
    • 5.5‐inch Mayo‐Hegar or similar needle holder
  • Sterile gauze sponges (2 × 2 in.)
  • 27‐G needle
  • Ear punch or tattooing device to identify individual mice
  • Additional reagents and equipment for using a hemacytometer for cell counting (Phelan, 2006) and euthanasia by CO 2 asphyxiation (Donovan and Brown, )
NOTE: Ketamine is a CIII controlled substance, so a DEA license is needed to order it.
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Andre, T., Boni, C., Mounedji‐Boudiaf, L., Navarro, M., Tabernero, J., Hickish, T., Topham, C., Zaninelli, M., Clingan, P., Bridgewater, J., Tabah‐Fisch, I., and de Gramont, A. 2004. Multicenter International Study of Oxaliplatin/5‐Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon Cancer (MOSAIC) Investigators. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N. Engl. J. Med. 350:2343‐2351.
   Anzai, H., Frost, P., and Abbruzzese, J.L. 1992. Synergistic cytotoxicity with 2′‐deoxy‐5‐azacytidine and topotecan in vitro and in vivo. Cancer Res. 52:2180‐2185.
   Becher, O.J. and Holland, E.C. 2006. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res. 66:3355‐3359.
   Braun, A.H., Achterrath, W., Hansjochen, W., Vanhoefer, U., Harstrick, A., and Preusser, P. 2004. New systemic frontline treatment for metastatic colorectal carcinoma. Cancer 100:1558‐1577.
   Bruns, C.J., Liu, W., Davis, D.W., Shaheen, R.M., McConkey, D.J., Wilson, M.R., Bucana, C.D., Hicklin, D.J., and Ellis, L.M. 2000. Vascular endothelial growth factor is an in vivo survival factor for tumor endothelium in a murine model of colorectal carcinoma liver metastases. Cancer 89:488‐490.
   Caprioni, F. and Fornarini, G. 2007. Bevacizumab in the treatment of metastatic colorectal cancer. Future Oncol. 3:141‐148.
   Corpet, D.E. and Pierre, F. 2005. How good are rodent models of carcinogenesis in predicting efficacy in humans? A systematic review and meta‐analysis of colon chemoprevention in rats, mice and men. Eur. J. Cancer 41:1911‐1922.
   Cusack, J.C. Jr., Liu, R., Xia, L., Chao, T.H., Pien, C., Niu, W., Palombella, V.J., Neuteboom, S.T., and Palladino, M.A. 2006. NPI‐0052 enhances tumoricidal response to conventional cancer therapy in a colon cancer model. Clin. Cancer Res. 12:6758‐6764.
   Donovan, J. and Brown, P. 2006. Euthanasia. Curr. Protoc. Immunol. 73:1.8.1‐1.8.4.
   Guichard, S., Arnould, S., Hennebelle, I., Bugart, R., and Canal, P. 2001. Combination of oxaliplatin and irinotecan on human colon cancer cell lines: Activity in vitro and in vivo. Anti‐Cancer Drugs 12:741‐751.
   Jansen, W.J., Zwart, B., Hulscher, S.T., Giaccone, G., Pinedo, H.M., and Boven, E. 1997. CPT‐11 in human colon‐cancer cell lines and xenografts: Characterization of cellular sensitivity determinants. Int. J. Cancer 70:335‐340.
   Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Smigal, C., and Thun, M.J., 2006. Cancer statistics, 2006. CA Cancer J. Clin. 56:106‐130.
   Jones‐Bolin, S., Zhao, H., Hunter, K., Klein‐Szanto, A., and Ruggeri, B. 2006. The effects of the oral, pan‐VEGF‐R kinase inhibitor CEP‐7055 and chemotherapy in orthotopic models of glioblastoma and colon carcinoma in mice. Mol. Cancer Ther. 5:1744‐1753.
   Kobaek‐Larsen, M., Thorup, I., Diederichsen, A., Fenger, C., and Hoitinga, M.R. 2000. Review of colorectal cancer and its metastases in rodent models: Comparative aspects with those in humans. Comp. Med. 50:16‐26.
   Kubota, T. 1994. Metastatic models of human cancer xenografted in the nude mouse: The importance of orthotopic transplantation. J. Cell. Biochem. 56:4‐8.
   Miknyoczki, S.J., Jones‐Bolin, S., Pritchard, S., Hunter, K., Zhao, H., Wan, W., Ator, M., Bihovsky, R., Hudkins, R., Chatterjee, S., Klein‐Szanto, A., Dionne, C., and Ruggeri, B. 2003. Chemo‐potentiation of temozolomide, irinotecan, and cisplatin activity by CEP‐6800‐ a poly (ADP‐ribose) polymerase (PARP) inhibitor. Mol. Cancer Therap. 2:371‐382.
   Morikawa, K., Walker, S.M., Jessup, J.M., and Fidler, I.J. 1988. In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res. 48:1943‐1948.
   Raymond, E., Faivre, S., Chaney, S., Woynarowski, J., and Cvitkovic, E. 2002. Cellular and molecular pharmacology of oxaliplatin. Mol. Cancer Ther. 1:227‐235.
   Rogers, A.B. and Fox, J.G. 2004. Inflammation and cancer. I. Rodent models of infectious gastrointestinal and liver cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 286:G361‐G366.
   Ruggeri, B.A., Chang, H., Hunter, K., Robinson, C., and the Cephalon‐Sanofi‐Synthelabo Joint Project Development Team. 2003. CEP‐7055: A novel, orally active pan inhibitor of vascular endothelial growth factor receptor tyrosine kinases with potent anti‐angiogenic activity and anti‐tumor efficacy in pre‐clinical models. Cancer Res. 63:5978‐5991.
   Schackert, H.K. and Fidler, I.J. 1989. Development of an animal model to study the biology of recurrent colorectal cancer originating from mesenteric lymph system metastases. Int. J. Cancer 44:177‐181.
   Singh, M. and Johnson, L. 2006. Using genetically engineered mouse models of cancer to aid drug development: An industry perspective. Clin. Cancer Res. 12:5312‐5328.
   Wilmanns, C., Fan, D., O'Brian, C.A., Bucana, C.D., and Fidler, I.J. 1992. Orthotopic and extopic organ environments differentially influence the sensitivity of murine colon carcinoma cells to doxorubicin and 5‐fluorouracil. Int. J. Cancer 52:98‐104.
   Wong, S.F. 2005. Cetuximab: An epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin. Ther. 27:684‐694.
   Yokoi, K., Thaker, P.H., Yazici, S., Rebhun, R.R., Nam, D.H., He, J., Kim, S.J., Abbruzzese, J.L., Hamilton, S.R., and Fidler, I.J. 2005. Dual inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation by AEE788 reduces growth and metastasis of human colon carcinoma in an orthotopic nude mouse model. Cancer Res. 65:3716‐3725.
   Yorozuya, K., Kubota, T., Watanabe, M., Hasegawa, H., Ozawa, S., Kitajima, M., Chikahisa, L.M., and Yamada, Y. 2005. TSU‐68 (SU6668) inhibits local tumor growth and liver metastasis of human colon cancer xenografts via anti‐angiogenesis. Oncol. Rep. 14:677‐682.
PDF or HTML at Wiley Online Library