Pre‐Clinical Models of Renal Carcinoma and Their Utility in Drug Development

Brenda C. Salumbides1, Kristin M. Lehet2, Georges Ndikuyeze1, Roberto Pili2

1 Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, 2 Roswell Park Cancer Institute, Buffalo, New York
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 14.13
DOI:  10.1002/0471141755.ph1413s47
Online Posting Date:  December, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Significant progress has been made in the treatment of patients with advanced renal cancer. In addition to immunotherapy, there are several potentially distinct therapeutic approaches for targeting molecular pathways. The murine models detailed in this unit are useful for testing rational combination strategies. Moreover, animal models contribute immensely to the understanding of the genetic, epigenetic, and biological aspects of human disease. Compared to humans, rodent models are relatively short‐lived and allow for the facile study of clinically relevant pathologies. Animal models for the study of renal cell carcinoma (RCC) are particularly useful for the development of new drugs for kidney cancer. Included in this unit are several in vivo models that are currently used to evaluate therapeutic approaches to renal cancer therapy and to investigate the pathophysiology of this condition. Included are both murine (RENCA) and renal cell carcinomas in subcutaneous and orthotopic models using tumor cell lines and human tumor tissue. Curr. Protoc. Pharmacol. 47:14.13.1‐14.13.19. © 2009 by John Wiley & Sons, Inc.

Keywords: renal cell carcinoma; metastastic tumor; xenograft model; orthotopic implantation; subcutaneous implantation; angiogenesis; bioluminescent imaging; immunotherapy; combination therapy; retinoids

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Orthotopic Model of Murine Renal Adenocarcinoma in Syngeneic BALB/c Mice (RENCA Model)
  • Basic Protocol 2: Use of Orthotopic RENCA Model in Drug Screening
  • Basic Protocol 3: Use of Bioluminescent Imaging to Measure Real‐Time Tumor Growth In the RENCA or RCC Model
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Orthotopic Model of Murine Renal Adenocarcinoma in Syngeneic BALB/c Mice (RENCA Model)

  Materials
  • BALB/c mice (female, 4‐ to 6‐weeks‐old; NIH, NCI Fredrick, or Charles River Laboratories)
  • RENCA cells (ATCC #CRL‐2947)
  • RPMI 1640 supplemented with 1% L‐glutamine, 1% penicillin/streptomycin (Invitrogen) and 10% fetal calf serum
  • Phosphate‐buffered saline (PBS), pH 7.4 (Invitrogen)
  • 1× trypsin/EDTA (Invitrogen)
  • Hanks' balanced salt solution (HBSS; Invitrogen)
  • Trypan blue stain (Sigma‐Aldrich)
  • Ketamine/xylazine mixture (see recipe)
  • Sterile surgical alcohol prep pads, medium (VWR) or 70% ethanol spray
  • Betadine solution swabstick (Fisher Scientific)
  • 25‐, 75‐, and 150‐cm2 tissue culture flasks
  • 15‐ml conical tubes
  • Hemacytometer or automated cell counter
  • 1‐ml syringes and 27‐G needles
  • Balance accurate to 0.1 g
  • Surgical instruments (Fine Science Tools) including (two sets of instruments recommended):
    • Microdissecting scissors
    • 5.5‐in. operating scissors, sharp point
    • 4.5‐in. iris scissors, straight, sharp ends
    • 4.75‐in. curved forceps or delicate dressing forceps, serrated
    • 5.5‐in. Mayo Hegar needle holder (for suturing)
  • Sterile gauze
  • 100‐µl Hamilton syringe with removable needle (1710 NR 100 µl; 22S/61/3 Ecom, Hamilton Company)
  • Microscope
  • Absorbable surgical sutures (Cardinal Health) vicryl 4/0 (1.5 metric), for closing peritoneal layer
  • 9‐mm wound clips (Fisher), with applier and remover
  • Ear punch device (Harvard Apparatus)
  • Heat lamp
NOTE: All culture incubations are performed in a humidified 37°C, 5% CO 2 incubator unless otherwise specified.NOTE: All solutions and equipment coming into contact with living cells must be sterile and sterile technique employed when handling the material. All work is performed in a laminar flow hood to maintain a sterile environment. All individuals handling animals must wear sterile gloves and use sterile instruments. Animals should be anesthesized with an i.p. injection of ketamine/xylazine mixture.

Basic Protocol 2: Use of Orthotopic RENCA Model in Drug Screening

  Materials
  • Mice orthotopically injected with RENCA cells in subcapsular space of kidney (see protocol 1)
  • CO 2 source
  • H&E stain (Sigma‐Aldrich)
  • Zinc fixative (see recipe)
  • 10% neutral buffered formalin (Sigma‐Aldrich)
  • Liquid nitrogen
  • Bouin's toxin (Ricca Chemical Company, cat. no. 1120‐1)
  • 0.1 M Tris⋅Cl buffer, pH 7.4
  • Animal balance
  • 1‐ml syringes and 27‐G needles
  • Serrated forceps or thread
  • 50‐ml conical tubes
  • Caliper

Basic Protocol 3: Use of Bioluminescent Imaging to Measure Real‐Time Tumor Growth In the RENCA or RCC Model

  Materials
  • RENCA (ATCC #CRL‐2947) or human RCC cell lines (NCI Frederick)
  • RPMI complete medium (see recipe)
  • Cignal Lenti reporter (SABiosciences)
  • 8 mg/ml polybrene (Sigma Aldrich)
  • Trypsin
  • 25 mg/ml D‐luciferin (CaliperLife Sciences)
  • XTT cell proliferation kit (Roche) or MTT cell proliferation kit (Promega)
  • Test compounds
  • Luciferase‐transfected cells (with modified firefly luciferase gene under control of TRE promoter) (Promega)
  • Inbred BALB/c mice for RENCA (NIH), SCID, or athymic nude mice for RCC (NIH)
  • 6‐ and 96‐well plates
  • Bioluminescence imager (e.g., Xenogen IVIS camera system)
  • Spectrophotometer
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Abrams, J.S., Rayner, A.A., Wiernik, P.H., Parkinson, D.R., Eisenberger, M., Aronson, F.R., Gucalp, R., Atkins, M.B., and Hawkins, M.J. 1990. High‐dose recombinant interleukin‐2 alone: A regimen with limited activity in the treatment of advanced renal cell carcinoma. J. Natl. Cancer Inst. 82:1202‐1206.
   An, Z. and Hoffman, R. 1999. Development of a high metastatic orthotopic model of human RCC: Benefits of fragment implantation compared to cell‐suspension injection. Clin. Exp. Metastasis 17:265‐270.
   Atkins, M.B., Redman, B., Mier, J., Gollob, J., Weber, J., Sosman, J., MacPherson, B.L., and Plasse, T. 2001. A phase I study of CNI‐1493, an inhibitor of cytokine release, in combination with high‐dose interleukin‐2 in patients with renal cancer and melanoma. Clin. Cancer Res. 7:486‐492.
   Contag, C.H., Jenkins, D., Contag, P.R., and Negrin, R.S. 2007. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2:41‐52.
   Coppin, C., Le, L., Porzsolt, F., and Wilt, T. 2008. Targeted therapy for advanced renal cell carcinoma. Cochrane DB Syst. Rev. 2:CD00617.
   Edinger, M., Sweeney, T.J., Tucker, A.A., Olomu, A.B., Negrin, R.S., and Contag, C.H. 1999. Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1:303‐310.
   Escudier, B., Eisen, T., Stadler, W.M., Szczylik, C., Oudard, S., Siebels, M., Negrier, S., Chevreau, C., Solska, E., Desai, A.A., Rolland, F., Demkow, T., Hutson, T.E., Gore, M., Freeman, S., Schwartz, B., Shan, M., Simantov, R., Bukowski, R.M., and TARGET Study Group. 2007. Sorafenib in advanced clear‐cell renal‐cell carcinoma. N. Engl. J. Med. 356:125‐134.
   Fidler, I.J. and Balch, C.M. 1987. The biology of cancer metastasis and implications for therapy. Curr. Probl. Surg. 24:129‐209.
   Hrushesky, W.J. and Murphy, G.P. 1973. Investigation of a new renal tumor model. J. Surg. Res. 15:327‐332.
   Hudes, G., Carducci, M., Tomczak, P., Dutcher, J., Figlin, R., Kapoor, A., Staroslawska, E., Sosman, J., McDermott, D., Bodrogi, I., Kovacevic, Z., Lesovoy, V., Schmidt‐Wolf, I.G., Barbarash, O., Gokmen, E., O'Toole, T., Lustgarten, S., Moore, L., Motzer, R.J., and Global ARCC Trial. 2007. Temsirolimus, interferon alfa, or both for advanced renal‐cell carcinoma. N. Engl. J. Med. 356:2271‐2281.
   Iyer, M., Salazar, F.B., Wu, L., Carey, M., and Gambhir, S.S. 2006. Bioluminescence imaging of systemic tumor targeting using a prostate‐specific lentiviral vector. Hum. Gene Ther. 17:125‐132.
   Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., and Thun, M.J. 2007. Cancer statistics. CA Cancer J. Clin. 2007:57:43‐66.
   Jenkins, D.E., Yu, S.F., Hornig, Y.S., Purchio, T., and Contag, P.R. 2003. In vivo monitoring of tumor relapse and metastasis using bioluminescent PC‐3M‐luc‐C6 cells in murine models of human prostate cancer. Clin. Exp. Metastasis 20:745‐756.
   Karashima, T., Inoue, K., Fukata, S., Iiyama, T., Kurabayashi, A., Kawada, C., and Shuin, T. 2007. Blockade of the vascular endothelial growth factor‐receptor 2 pathway inhibits the growth of human renal cell carcinoma, RBM1‐IT4 in the kidney but not in the bone of nude mice. Int. J. Oncol. 30:937‐945.
   Kato, Y., Yoshimura, K., Shin, T., Verheul, H.M., Sanni, T.B., Salumbides, B.C., Van Erp, K., Schulick, R., and Pili, R. 2007. Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS‐275 in combination with interleukin 2 in a murine model of renal cell carcinoma. Clin. Cancer Res. 13:4538‐4546.
   Motzer, R.J., Hutson, T.E., Tomczak, P., Michaelson, M.D., Bukowski, R.M., Rixe, O., Oudard, S., Negrier, S., Szczylik, C., Kim, S.T., Chen, I., Bycott, P.W., Baum, C.M., and Figlin, R.A. 2007. Sunitinib versus interferon alfa in metastatic renal‐cell carcinoma. N. Engl. J. Med. 356:115‐124.
   Negrier, S., Escudier, B., Lasset, C., Douillard, J.Y., Savary, J., Chevreau, C., Ravaud, A., Mercatello, A., Peny, J., Mousseau, M., Philip, T., and Tursz, T. 1998. Recombinant human interleukin‐2, recombinant human interferon alfa‐2a, or both in metastatic renal‐cell carcinoma. Groupe Francais d'Immunotherapie. N. Engl. J. Med. 338:1272‐1278.
   Nogawa, M., Yuasa, T., Kimura, S., Kuroda, J., Sato, K., Segawa, H., Yokota, A., and Maekawa, T. 2005. Monitoring luciferase‐labeled cancer cell growth and metastasis in different in vivo models. Cancer Lett. 217:243‐253.
   Norrby, K. 2006. In vivo models of angiogenesis. J. Cell. Mol. Med. 10:588‐612.
   Patel, P.H., Chaganti, R.S., and Motzer, R.J. 2006. Targeted therapy for metastatic renal cell carcinoma. Br. J. Cancer 94:614‐619.
   Peter, C., Kielstein, J.T., Clarke‐Katzenberg, R., Adams, M.C., Pitsiouni, M., Kambham, N., Karimi, M.A., Kengatharan, K.M., and Cooke, J.P. 2007. A novel bioluminescent tumor model of human cancer cell lines: An in vitro and in vivo characterization. J. Urol. 177:2342‐2346.
   Qian, D.Z., Wang, X.F., Kachhap, S.K., Kato, Y., Wei, Y.F., Zhang, L., Atadja, P., and Pili, R. 2004. The hystone deacetylase inhibitor LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the VEGF receptor kinase inhibitor PTK787‐ZK222584. Cancer Res. 64:6626‐6634.
   Qian, D.Z., Kachhap, S.K., Collis, S.J., Verheul, H.M.W., Carducci, M.A., Atadja, P., and Pili, R. 2006. Class II histone deacetylases are associated with VHL‐independent regulation of hypoxia‐inducible factor 1alpha. Cancer Res. 66:8814‐8821.
   Rini, B.I. and Bukowski, R.M. 2008. Targeted therapy for metastatic renal cell carcinoma: A home run or a work in progress? Oncology 22:388‐396.
   Schirner, M., Hoffman, J., Menrad, A., and Schneider, M.R. 1998. Antiangiogenic chemotherapeutic agents: Characterization in comparison to their tumor growth inhibition in human renal cell carcinoma models. Clin. Cancer Res. 4:1331‐1336.
   Verheul, H.M., Hammers, H.J., van Erp, K., Wei, Y., Sanni, T., Salumbides, B., Qian, D.Z., Yancopoulos, G.D., and Pili, R. 2007. Vascular endothelial growth factor trap blocks tumor growth, metastasis formation, and vascular leakage in an orthotopic renal cell cancer model. Clin. Cancer Res. 13:4201‐4208.
   Verheul, H.M.W., Qian, D.Z., Van Erp, K., Salumbides, B., Sanni, T., Atadja, P., and Pili, R. 2008. Combination strategy targeting the hypoxia inducible factor‐α (HIF‐1 α) with mTOR and HDAC inhibitors. Clin. Cancer Res. 14:3589‐3597.
   Wang, X.F., Qian, D.Z., Ren, M., Kato, Y., Wei, Y., Zhang, L., Fansler, Z., Clark, D., Nakanishi, O., and Pili, R. 2005. Epigenetic modulation of retinoic acid receptor β2 by the histone deacetylase inhibitor MS‐275 in human renal cell carcinoma. Clin. Cancer. Res. 11:3535‐3542.
   Wood, L.A., Escudier, B., and Reaume, N. 2007. Summary of the first annual genitourinary medical oncology conference renal cell carcinoma forum. Can. Urol. Assoc. J. 1:S6‐S12.
   Yang, J.C.Y. 2000. Interleukin‐2: Clinical applications: Renal cell carcinoma. In Principles and Practice of the Biologic Therapy of Cancer, 3rd ed. (S.A. Rosenberg, ed.) pp. 73‐82. Lippincott, Williams, & Wilkins, Philadelphia.
   Yang, J.C., Sherry, R.M., Steinberg, S.M., Topalian, S.L., Schwartzentruber, D.J., Hwu, P., Seipp, C.A., Rogers‐Freezer, L., Morton, K.E., White, D.E., Liewehr, D.J., Merino, M.J., and Rosenberg, S.A. 2003. Randomized study of high‐dose and low‐dose interleukin‐2 in patients with metastatic renal cancer. J. Clin. Oncol. 21:3127‐3132.
   Zili, A., Jiang, P., Wang, X., Moossa, A.R., and Hoffman, R.M. 1999. Development of a high metastatic orthotopic model of human renal cell carcinoma in nude mice: Benefits of fragment implantation compared to cell‐suspension injection. Clin. Exp. Metastasis 17:265‐270.
   Zisman, A., Pantuck, A.J., Bui, M.H., Said, J.W., Caliliw, R.R., Rao, N., Shintaku, P., Berger, F., Gambhir, S.S., and Belldegrun, A.S. 2003. LABAZ1: A metastatic tumor model for renal cell carcinoma expressing the carbonic anhydrase type 9 tumor antigen. Cancer Res. 63:4952‐4959.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library