Overview of Human Primary Tumorgraft Models: Comparisons with Traditional Oncology Preclinical Models and the Clinical Relevance and Utility of Primary Tumorgrafts in Basic and Translational Oncology Research

David H. Lum1, Cindy Matsen2, Alana L. Welm1, Bryan E. Welm2

1 Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, 2 Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 14.22
DOI:  10.1002/0471141755.ph1422s59
Online Posting Date:  December, 2012
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Laboratory models that accurately replicate human tumor initiation and characteristics are integral to advancing knowledge in cancer research. However, comparative studies between commonly employed laboratory models and human tumors have demonstrated that some models have molecular and genomic alterations dissimilar to the cancer type they attempt to replicate. In contrast, several recent comparative studies suggest that because patient‐derived tumors grown in mice maintain many of the important characteristics of the original tumor, they represent an important tool for the development of new cancer therapeutics. Detailed in this overview are the advantages and disadvantages of the most commonly used cancer models for mechanistic and therapeutic research, with an emphasis on the advances made in the production and use of patient‐derived tumorgrafts. Curr. Protoc. Pharmacol. 59:14.22.1‐14.22.9. © 2012 by John Wiley & Sons, Inc.

Keywords: cancer models; tumorgraft; xenograft; orthotopic transplantation; genetically engineered mouse models; patient‐derived tissue

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Genetically Engineered Mouse Models of Cancer
  • Cancer Cell Lines as Derivatives of Human Tumors and Models for Drug Discovery
  • Cancer Cell Line Xenografts as In Vivo Models for Cancer
  • Cell Line Xenografts as Predictors of Compound Response in Patients
  • Challenges with Cell Lines as Models of Human Cancer
  • Tumorgrafts as Improved In Vivo Models for Cancer
  • Tumorgrafts as Models for Drug Development and Testing
  • Conclusions
  • Acknowledgements
  • Literature Cited
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Boehle, A.S., Dohrmann, P., Leuschner, I., Kalthoff, H., and Henne‐Bruns, D. 2000. An improved orthotopic xenotransplant procedure for human lung cancer in SCID bg mice. Ann. Thorac. Surg. 69:1010‐1015.
   Boehm, T., Folkman, J., Browder, T., and O'Reilly, M.S. 1997. Antiangiogenic therapy experimental of cancer does not induce acquired drug resistance. Nature 390:404‐407.
   Bresalier, R.S., Raper, S.E., Hujanen, E.S., and Kim, Y.S. 1987. A new animal model for human colon cancer metastasis. Int. J. Cancer 39:625‐630.
   Burdall, S.E., Hanby, A.M., Lansdown, M.R., and Speirs, V. 2003. Breast cancer cell lines: Friend or foe? Breast Cancer Res. 5:89‐95.
   Cheon, D.J. and Orsulic, S. 2011. Mouse models of cancer. Annu. Rev. Pathol. 6:95‐119.
   Coezy, E., Borgna, J.L., and Rochefort, H. 1982. Tamoxifen and metabolites in MCF7 cells: Correlation between binding to estrogen receptor and inhibition of cell growth. Cancer Res. 42:317‐323.
   Cragg, G.M. 1998. Paclitaxel (Taxol): A success story with valuable lessons for natural product drug discovery and development. Med. Res. Rev. 18:315‐331.
   Damia, G. and D'Incalci, M. 2009. Contemporary pre‐clinical development of anticancer agents—what are the optimal preclinical models? Eur. J. Cancer 45:2768‐2781.
   Dangles‐Marie, V., Pocard, M., Richon, S., Weiswald, L.B., Assayag, F., Saulnier, P., Judde, J.G., Janneau, J.L., Auger, N., Validire, P., Dutrillaux, B., Praz, F., Bellet, D., and Poupon, M.F. 2007. Establishment of human colon cancer cell lines from fresh tumors versus xenografts: Comparison of success rate and cell line features. Cancer Res. 67:398‐407.
   de Visser, K.E., Eichten, A., and Coussens, L.M. 2006. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6:24‐37.
   DeRose, Y.S., Wang, G., Lin, Y.C., Bernard, P.S., Buys, S.S., Ebbert, M.T., Factor, R., Matsen, C., Milash, B.A., Nelson, E., Neumayer, L., Randall, R.L., Stijleman, I.J., Welm, B.E., and Welm, A.L. 2011. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17:1514‐1520.
   Ding, L., Ellis, M.J., Li, S., Larson, D.E., Chen, K., Wallis, J.W., Harris, C.C., McLellan, M.D., Fulton, R.S., Fulton, L.L., Abbott, R.M., Hoog, J., Dooling, D.J., Koboldt, D.C., Schmidt, H., Kalicki, J., Zhang, Q., Chen, L., Lin, L., Wendl, M.C., McMichael, J.F., Magrini, V.J., Cook, L., McGrath, S.D., Vickery, T.L., Appelbaum, E., Deschryver, K., Davies, S., Guintoli, T., Lin, L., Crowder, R., Tao, Y., Snider, J.E., Smith, S.M., Dukes, A.F., Sanderson, G.E., Pohl, C.S., Delehaunty, K.D., Fronick, C.C., Pape, K.A., Reed, J.S., Robinson, J.S., Hodges, J.S., Schierding, W., Dees, N.D., Shen, D., Locke, D.P., Wiechert, M.E., Eldred, J.M., Peck, J.B., Oberkfell, B.J., Lolofie, J.T., Du, F., Hawkins, A.E., O'Laughlin, M.D., Bernard, K.E., Cunningham, M., Elliott, G., Mason, M.D., Thompson, D.M.Jr., Ivanovich, J.L., Goodfellow, P.J., Perou, C.M., Weinstock, G.M., Aft, R., Watson, M., Ley, T.J., Wilson, R.K., and Mardis, E.R. 2010. Genome remodelling in a basal‐like breast cancer metastasis and xenograft. Nature 464:999‐1005.
   Egeblad, M., Nakasone, E.S., and Werb, Z. 2010. Tumors as organs: Complex tissues that interface with the entire organism. Develop. Cell 18:884‐901.
   Ellerkamp, V., Armeanu‐Ebinger, S., Wenz, J., Warmann, S.W., and Schäfer, J. 2011. Successful establishment of an orthotopic hepatoblastoma in vivo model in NOD/LtSz‐scid IL2Rγnull mice. PLoS One 6:e23419.
   Fidler, I.J. 1991. Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis. Cancer Metastasis Rev. 10:229‐243.
   Forozan, F., Mahlamaki, E.H., Monni, O., Chen, Y., Veldman, R., Jiang, Y., Gooden, G.C., Ethier, S.P., Kallioniemi, A., and Kallioniemi, O.P. 2000. Comparative genomic hybridization analysis of 38 breast cancer cell lines: A basis for interpreting complementary DNA microarray data. Cancer Res. 60:4519‐4525.
   Fu, X.Y., Besterman, J.M., Monosov, A., and Hoffman, R.M. 1991. Models of human metastatic colon cancer in nude mice orthotopically constructed by using histologically intact patient specimens. Proc. Natl. Acad. Sci. U.S.A. 88:9345‐9349.
   Fu, X., Herrera, H., Kubota, T., and Hoffman, R.M. 1992. Extensive liver metastasis from human colon cancer in nude and scid mice after orthotopic onplantation of histologically‐intact human colon carcinoma tissue. Anticancer Res. 12:1395‐1397.
   Furukawa, T., Kubota, T., Suto, A., Takahara, T., Yamaguchi, H., Takeuchi, T., Kase, S., Kodaira, S., Ishibiki, K., and Kitajima, M. 1991. Clinical usefulness of chemosensitivity testing using the MTT assay. J. Surg.Oncol. 48:188‐193.
   Furukawa, T., Kubota, T., Watanabe, M., Kuo, T.H., Kase, S., Saikawa, Y., Tanino, H., Teramoto, T., Ishibiki, K., Kitajima, M. et al. 1993a. Immunochemotherapy prevents human colon cancer metastasis after orthotopic onplantation of histologically‐intact tumor tissue in nude mice. Anticancer Res. 13:287‐291.
   Furukawa, T., Kubota, T., Watanabe, M., Kuo, T.H., Nishibori, H., Kase, S., Saikawa, Y., Tanino, H., Teramoto, T., Ishibiki, K. et al. 1993b. A metastatic model of human colon cancer constructed using cecal implantation of cancer tissue in nude mice. Surgery Today 23:420‐423.
   Giavazzi, R., Campbell, D.E., Jessup, J.M., Cleary, K., and Fidler, I.J. 1986a. Metastatic behavior of tumor cells isolated from primary and metastatic human colorectal carcinomas implanted into different sites in nude mice. Cancer Res. 46:1928‐1933.
   Giavazzi, R., Jessup, J.M., Campbell, D.E., Walker, S.M., and Fidler, I.J. 1986b. Experimental nude mouse model of human colorectal cancer liver metastases. J. Natl. Cancer Inst. 77:1303‐1308.
   Herschkowitz, J.I., Simin, K., Weigman, V.J., Mikaelian, I., Usary, J., Hu, Z., Rasmussen, K.E., Jones, L.P., Assefnia, S., Chandrasekharan, S., Backlund, M.G., Yin, Y., Khramtsov, A.I., Bastein, R., Quackenbush, J., Glazer, R.I., Brown, P.H., Green, J.E., Kopelovich, L., Furth, P.A., Palazzo, J.P., Olopade, O.I., Bernard, P.S., Churchill, G.A., Van Dyke, T., and Perou, C.M. 2007. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8:R76.
   Hidalgo, M., Bruckheimer, E., Rajeshkumar, N.V., Garrido‐Laguna, I., De Oliveira, E., Rubio‐Viqueira, B., Strawn, S., Wick, M.J., Martell, J., and Sidransky, D. 2011. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther. 10:1311‐1316.
   Hoffman, R.M. 1998. Orthotopic transplant mouse models with green fluorescent protein‐expressing cancer cells to visualize metastasis and angiogenesis. Cancer Metastasis Rev. 17:271‐277.
   Holmgren, L., O'Reilly, M.S., and Folkman, J. 1995. Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med. 1:149‐153.
   Horstmann, E., McCabe, M.S., Grochow, L., Yamamoto, S., Rubinstein, L., Budd, T., Shoemaker, D., Emanuel, E.J., and Grady, C. 2005. Risks and benefits of phase 1 oncology trials, 1991 through 2002. New Engl. J. Med. 352:895‐904.
   Houghton, P.J., Morton, C.L., Tucker, C., Payne, D., Favours, E., Cole, C., Gorlick, R., Kolb, E.A., Zhang, W., Lock, R., Carol, H., Tajbakhsh, M., Reynolds, C.P., Maris, J.M., Courtright, J., Keir, S.T., Friedman, H.S., Stopford, C., Zeidner, J., Wu, J., Liu, T., Billups, C.A., Khan, J., Ansher, S., Zhang, J., and Smith, M.A. 2007. The pediatric preclinical testing program: description of models and early testing results. Pediatr. Blood Cancer 49:928‐940.
   Hughes, P., Marshall, D., Reid, Y., Parkes, H., and Gelber, C. 2007. The costs of using unauthenticated, over‐passaged cell lines: how much more data do we need? BioTechniques 43:575, 577‐578, 581‐572 passim.
   Inaba, M., Kobayashi, T., Tashiro, T., and Sakurai, Y. 1988. Pharmacokinetic approach to rational therapeutic doses for human tumor‐bearing nude mice. Japan. J. Cancer Res. 79:509‐516.
   Inaba, M. 1991. Pharmacokinetic approach to the improvement of clinical predictability in the preclinical test for antitumor agents. Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo. Gan To Kagaku Ryoho 18:1449‐1456.
   Johnson, J.I., Decker, S., Zaharevitz, D., Rubinstein, L.V., Venditti, J.M., Schepartz, S., Kalyandrug, S., Christian, M., Arbuck, S., Hollingshead, M., and Sausville, E.A. 2001. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84:1424‐1431.
   Kalluri, R. and Zeisberg, M. 2006. Fibroblasts in cancer. Nat. Rev. Cancer 6:392‐401.
   Kao, J., Salari, K., Bocanegra, M., Choi, Y.L., Girard, L., Gandhi, J., Kwei, K.A., Hernandez‐Boussard, T., Wang, P., Gazdar, A.F., Minna, J.D., and Pollack, J.R. 2009. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PloS One 4:e6146.
   Karasarides, M., Chiloeches, A., Hayward, R., Niculescu‐Duvaz, D., Scanlon, I., Friedlos, F., Ogilvie, L., Hedley, D., Martin, J., Marshall, C.J., Springer, C.J., and Marais, R. 2004. B‐RAF is a therapeutic target in melanoma. Oncogene 23:6292‐6298.
   Kerbel, R.S. 2003. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: Better than commonly perceived‐but they can be improved. Cancer Biol. Ther. 2:S134‐S139.
   Kerbel, R.S., Cornil, I., and Theodorescu, D. 1991. Importance of orthotopic transplantation procedures in assessing the effects of transfected genes on human tumor growth and metastasis. Cancer Metastasis Rev. 10:201‐215.
   Kubota, T. 1994. Metastatic models of human cancer xenografted in the nude mouse: The importance of orthotopic transplantation. J. Cell. Biochem. 56:4‐8.
   Kubota, T., Ishibiki, K., and Abe, O. 1988. The clinical usefulness of human xenografts in nude mice. Progr. Clin. Biol. Res. 276:213‐225.
   Kuo, T.H., Kubota, T., Watanabe, M., Furukawa, T., Kase, S., Tanino, H., Saikawa, Y., Ishibiki, K., Kitajima, M., and Hoffman, R.M. 1993. Site‐specific chemosensitivity of human small‐cell lung carcinoma growing orthotopically compared to subcutaneously in SCID mice: the importance of orthotopic models to obtain relevant drug evaluation data. Anticancer Res. 13:627‐630.
   Langley, R.R. and Fidler, I.J. 2007. Tumor cell‐organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev. 28:297‐321.
   Lin, E.Y., Jones, J.G., Li, P., Zhu, L., Whitney, K.D., Muller, W.J., and Pollard, J.W. 2003. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol. 163:2113‐2126.
   Lippman, M.E., Bolan, G., and Huff, K. 1975. Human breast cancer responsive to androgen in long term tissue culture. Nature 258:339‐341.
   Lupu, R., Colomer, R., Zugmaier, G., Sarup, J., Shepard, M., Slamon, D., and Lippman, M.E. 1990. Direct interaction of a ligand for the erbB2 oncogene product with the EGF receptor and p185erbB2. Science 249:1552‐1555.
   McConkey, D.J., Choi, W., Fournier, K., Marquis, L., Ramachandran, V., and Arumugam, T. 2010. Molecular characterization of pancreatic cancer cell lines. In Pancreatic Cancer (J.P. Neoptolemos, R. Urrutia, J.L. Abbruzzese, and M.W. Büchler, eds.), pp. 457‐469. Springer, New York.
   Minn, A.J., Gupta, G.P., Siegel, P.M., Bos, P.D., Shu, W., Giri, D.D., Viale, A., Olshen, A.B., Gerald, W.L., and Massague, J. 2005a. Genes that mediate breast cancer metastasis to lung. Nature 436:518‐524.
   Minn, A.J., Kang, Y., Serganova, I., Gupta, G.P., Giri, D.D., Doubrovin, M., Ponomarev, V., Gerald, W.L., Blasberg, R., and Massague, J. 2005b. Distinct organ‐specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115:44‐55.
   Morikawa, K., Walker, S.M., Jessup, J.M., and Fidler, I.J. 1988a. In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res. 48:1943‐1948.
   Morikawa, K., Walker, S.M., Nakajima, M., Pathak, S., Jessup, J.M., and Fidler, I.J. 1988b. Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res. 48:6863‐6871.
   Neale, G., Su, X., Morton, C.L., Phelps, D., Gorlick, R., Lock, R.B., Reynolds, C.P., Maris, J.M., Friedman, H.S., Dome, J., Khoury, J., Triche, T.J., Seeger, R.C., Gilbertson, R., Khan, J., Smith, M.A.., and Houghton, P.J. 2008. Molecular characterization of the pediatric preclinical testing panel. Clin. Cancer Res. 14:4572‐4583.
   Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F.L., Fevr, T., Clark, L., Bayani, N., Coppe, J.P., Tong, F., Speed, T., Spellman, P.T., DeVries, S., Lapuk, A., Wang, N.J., Kuo, W.L., Stilwell, J.L., Pinkel, D., Albertson, D.G., Waldman, F.M., McCormick, F., Dickson, R.B., Johnson, M.D., Lippman, M., Ethier, S., Gazdar, A., and Gray, J.W. 2006. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515‐527.
   O'Reilly, M.S., Holmgren, L., Chen, C., and Folkman, J. 1996. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat. Med. 2:689‐692.
   Peterson, J.K. and Houghton, P.J. 2004. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur. J. Cancer 40:837‐844.
   Pocard, M., Tsukui, H., Salmon, R.J., Dutrillaux, B., and Poupon, M.F. 1996. Efficiency of orthotopic xenograft models for human colon cancers. In Vivo 10:463‐469.
   Rangarajan, A. and Weinberg, R.A. 2003. Opinion: Comparative biology of mouse versus human cells: Modelling human cancer in mice. Nat. Rev. Cancer 3:952‐959.
   Resor, L., Bowen, T.J., and Wynshaw‐Boris, A. 2001. Unraveling human cancer in the mouse: recent refinements to modeling and analysis. Hum. Mol. Gen. 10:669‐675.
   Richmond, A. and Su, Y. 2008. Mouse xenograft models vs GEM models for human cancer therapeutics. Dis. Models Mech. 1:78‐82.
   Ross, D.T. and Perou, C.M. 2001. A comparison of gene expression signatures from breast tumors and breast tissue derived cell lines. Dis. Markers 17:99‐109.
   Sarraf, P., Mueller, E., Jones, D., King, F.J., DeAngelo, D.J., Partridge, J.B., Holden, S.A., Chen, L.B., Singer, S., Fletcher, C., and Spiegelman, B.M. 1998. Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat. Med. 4:1046‐1052.
   Sharpless, N.E. and Depinho, R.A. 2006. The mighty mouse: Genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5:741‐754.
   Shoemaker, R.H. 2006. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 6:813‐823.
   Uronis, J.M., Osada, T., McCall, S., Yang, X.Y., Mantyh, C., Morse, M.A., Lyerly, H.K., Clary, B.M., and Hsu, D.S. 2012. Histological and molecular evaluation of patient‐derived colorectal cancer explants. PLoS One 7:e38422.
   Van Dyke, T. and Jacks, T. 2002. Cancer modeling in the modern era: Progress and challenges. Cell 108:135‐144.
   Whiteford, C.C., Bilke, S., Greer, B.T., Chen, Q., Braunschweig, T.A., Cenacchi, N., Wei, J.S., Smith, M.A., Houghton, P., Morton, C., Reynolds, C.P., Lock, R., Gorlick, R., Khanna, C., Thiele, C.J., Takikita, M., Catchpoole, D., Hewitt, S.M., and Khan, J. 2007. Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res. 67:32‐40.
   Yamada, Y. and Mori, H. 2007. Multistep carcinogenesis of the colon in Apc(Min/+) mouse. Cancer Sci. 98:6‐10.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library