Overview of Transgenic Glioblastoma and Oligoastrocytoma CNS Models and Their Utility in Drug Discovery

Fuyi Chen1, Albert Becker2, Joseph LoTurco3

1 Current address: Department of Neurology, Yale School of Medicine, New Haven, Conn., 2 Department of Neuropathology, University of Bonn Medical Center, Bonn, 3 Department of Physiology and Neurobiology, University of Connecticut, Storrs, Conn.
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 14.37
DOI:  10.1002/0471141755.ph1437s72
Online Posting Date:  March, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Many animal models have been developed to investigate the sources of central nervous system (CNS) tumor heterogeneity. Reviewed in this unit is a recently developed CNS tumor model using the piggyBac transposon system delivered by in utero electroporation, in which sources of tumor heterogeneity can be conveniently studied. Their applications for studying CNS tumors and drug discovery are also reviewed. © 2016 by John Wiley & Sons, Inc.

Keywords: central nervous system; tumor heterogeneity; piggyBac transposon; in utero electroporation; glioblastoma multiforme; anaplastic oligoastrocytoma; atypical teratoid rhabdoid tumor

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Somatic Transgenesis in Cerebral Cortex with In Utero Electroporation of piggyBac Transposon System
  • piggyBac IUE Approach‐Induced CNS Tumors
  • Applications of the piggyBac IUE CNS Tumor Model
  • In Vivo Tumor Imaging
  • Limitations and Solutions
  • Conclusion
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Alcantara Llaguno, S., Chen, J., Kwon, C.H., Jackson, E.L., Li, Y., Burns, D.K., Alvarez‐Buylla, A., and Parada, L.F. 2009. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15:45‐56. doi: 10.1016/j.ccr.2008.12.006.
  Awatramani, R., Soriano, P., Mai, J.J., and Dymecki, S. 2001. An Flp indicator mouse expressing alkaline phosphatase from the ROSA26 locus. Nat. Genet. 29:257‐259. doi: 10.1038/ng1101-257.
  Bai, J., Ramos, R.L., Ackman, J.B., Thomas, A.M., Lee, R.V., and LoTurco, J.J. 2003. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat. Neurosci. 6:1277‐1283. doi: 10.1038/nn1153.
  Bhang, H.E., Gabrielson, K.L., Laterra, J., Fisher, P.B., and Pomper, M.G. 2011. Tumor‐specific imaging through progression elevated gene‐3 promoter‐driven gene expression. Nat. Med. 17:123‐129. doi: 10.1038/nm.2269.
  Biegel, J.A. 2006. Molecular genetics of atypical teratoid/rhabdoid tumor. Neurosurg. Focus 20:E11.
  Blanpain, C. 2013. Tracing the cellular origin of cancer. Nat. Cell Biol. 15:126‐134. doi: 10.1038/ncb2657.
  Borrell, V., Yoshimura, Y., and Callaway, E.M. 2005. Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. J. Neurosci. Methods 143:151‐158. doi: 10.1016/j.jneumeth.2004.09.027.
  Breunig, J.J., Levy, R., Antonuk, C.D., Molina, J., Dutra‐Clarke, M., Park, H., Akhtar, A.A., Kim, G.B., Hu, X., Bannykh, S.I., Verhaak, R.G., and Danielpour, M. 2015. Ets factors regulate neural stem cell depletion and gliogenesis in ras pathway glioma. Cell Rep. 12:258‐271. doi: 10.1016/j.celrep.2015.06.012.
  Buckner, J.C., Brown, P.D., O'Neill, B.P., Meyer, F.B., Wetmore, C.J., and Uhm, J.H. 2007. Central nervous system tumors. Mayo Clin. Proc. 82:1271‐1286. doi: 10.4065/82.10.1271.
  Burrell, R.A., McGranahan, N., Bartek, J., and Swanton, C. 2013. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:338‐345. doi: 10.1038/nature12625.
  Candolfi, M., Curtin, J.F., Nichols, W.S., Muhammad, A.G., King, G.D., Pluhar, G.E., McNiel, E.A., Ohlfest, J.R., Freese, A.B., Moore, P.F., Lerner, J., Lowenstein, P.R., and Castro, M.G. 2007. Intracranial glioblastoma models in preclinical neuro‐oncology: Neuropathological characterization and tumor progression. J. Neurooncol. 85:133‐148. doi: 10.1007/s11060-007-9400-9.
  Cary, L.C., Goebel, M., Corsaro, B.G., Wang, H.G., Rosen, E., and Fraser, M.J. 1989. Transposon mutagenesis of baculoviruses: Analysis of Trichoplusia ni transposon IFP2 insertions within the FP‐locus of nuclear polyhedrosis viruses. Virology 172:156‐169. doi: 10.1016/0042-6822(89)90117-7.
  Centanni, T.M., Chen, F., Booker, A.M., Engineer, C.T., Sloan, A.M., Rennaker, R.L., LoTurco, J.J., and Kilgard, M.P. 2014. Speech sound processing deficits and training‐induced neural plasticity in rats with dyslexia gene knockdown. PLoS ONE 9:e98439. doi: 10.1371/journal.pone.0098439.
  Centanni, T.M., Booker, A.B., Sloan, A.M., Chen, F., Maher, B.J., Carraway, R.S., Khodaparast, N., Rennaker, R., LoTurco, J.J., and Kilgard, M.P. 2012. Knockdown of the dyslexia‐associated gene kiaa0319 impairs temporal responses to speech stimuli in rat primary auditory cortex. Cereb. Cortex 24:1753‐1766. doi: 10.1093/cercor/bht028.
  Charest, A., Wilker, E.W., McLaughlin, M.E., Lane, K., Gowda, R., Coven, S., McMahon, K., Kovach, S., Feng, Y., Yaffe, M.B., Jacks, T., and Housman, D. 2006. ROS fusion tyrosine kinase activates a SH2 domain‐containing phosphatase‐2/phosphatidylinositol 3‐kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Res. 66:7473‐7481. doi: 10.1158/0008-5472.CAN-06-1193.
  Chen, F. and LoTurco, J. 2012. A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J. Neurosci. Methods 207:172‐180. doi: 10.1016/j.jneumeth.2012.03.016.
  Chen, F., Becker, A., and LoTurco, J. 2014a. Sources of CNS tumor heterogeneity. Oncoscience 1:482‐483. doi: 10.18632/oncoscience.60.
  Chen, F., Becker, A.J., and Loturco, J.J. 2014b. Contribution of tumor heterogeneity in a new animal model of CNS tumors. Mol. Cancer Res. 12:742‐753. doi: 10.1158/1541-7786.MCR-13-0531.
  Chen, F., Maher, B.J., and LoTurco, J.J. 2014c. piggyBac transposon‐mediated cellular transgenesis in mammalian forebrain by in utero electroporation. Cold Spring Harb. Protoc. 7:741‐749. doi: 10.1101/pdb.prot073650.
  dal Maschio, M., Ghezzi, D., Bony, G., Alabastri, A., Deidda, G., Brondi, M., Sato, S.S., Zaccaria, R.P., Di Fabrizio, E., Ratto, G.M., and Cancedda, L. 2012. High‐performance and site‐directed in utero electroporation by a triple‐electrode probe. Nat. Comm. 3:960. doi: 10.1038/ncomms1961.
  Ding, S., Wu, X., Li, G., Han, M., Zhuang, Y., and Xu, T. 2005. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473‐483. doi: 10.1016/j.cell.2005.07.013.
  Elick, T.A., Bauser, C.A., and Fraser, M.J. 1996. Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica 98:33‐41. doi: 10.1007/BF00120216.
  Faury, D., Nantel, A., Dunn, S.E., Guiot, M.C., Haque, T., Hauser, P., Garami, M., Bognar, L., Hanzely, Z., Liberski, P.P., Lopez‐Aguilar, E., Valera, E.T., Tone, L.G., Carret, A.S., Del Maestro, R.F., Gleave, M., Montes, J.L., Pietsch, T., Albrecht, S., and Jabado, N. 2007. Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB‐1 expression in tumors. J. Clin. Oncol. 25:1196‐1208. doi: 10.1200/JCO.2006.07.8626.
  Feldkamp, M.M., Lau, N., and Guha, A. 1997. Signal transduction pathways and their relevance in human astrocytomas. J. Neurooncol. 35:223‐248. doi: 10.1023/A:1005800114912.
  Fisher, R., Larkin, J., and Swanton, C. 2012. Inter and intratumour heterogeneity: A barrier to individualized medical therapy in renal cell carcinoma? Front. Oncol. 2:49.
  Fraser, M.J., Ciszczon, T., Elick, T., and Bauser, C. 1996. Precise excision of TTAA‐specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol. Biol. 5:141‐151. doi: 10.1111/j.1365-2583.1996.tb00048.x.
  Friedmann‐Morvinski, D., Bushong, E.A., Ke, E., Soda, Y., Marumoto, T., Singer, O., Ellisman, M.H., and Verma, I.M. 2012. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080‐1084. doi: 10.1126/science.1226929.
  Fukuchi‐Shimogori, T. and Grove, E.A. 2001. Neocortex patterning by the secreted signaling molecule FGF8. Science 294:1071‐1074. doi: 10.1126/science.1064252.
  Glasgow, S.M., Zhu, W., Stolt, C.C., Huang, T.W., Chen, F., LoTurco, J.J., Neul, J.L., Wegner, M., Mohila, C., and Deneen, B. 2014. Mutual antagonism between Sox10 and NFIA regulates diversification of glial lineages and glioma subtypes. Nat. Neurosci. 17:1322‐1329. doi: 10.1038/nn.3790.
  Guha, A., Feldkamp, M.M., Lau, N., Boss, G., and Pawson, A. 1997. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 15:2755‐2765. doi: 10.1038/sj.onc.1201455.
  Haddad‐Tovolli, R., Heide, M., Zhou, X., Blaess, S., and Alvarez‐Bolado, G. 2012. Mouse thalamic differentiation: Gli‐dependent pattern and gli‐independent prepattern. Front. Neurosci. 6:27. doi: 10.3389/fnins.2012.00027.
  Hambardzumyan, D., Amankulor, N.M., Helmy, K.Y., Becher, O.J., and Holland, E.C. 2009. Modeling adult gliomas using RCAS/t‐va technology. Transl. Oncol. 2:89‐95. doi: 10.1593/tlo.09100.
  Haque, T., Faury, D., Albrecht, S., Lopez‐Aguilar, E., Hauser, P., Garami, M., Hanzely, Z., Bognar, L., Del Maestro, R.F., Atkinson, J., Nantel, A., and Jabado, N. 2007. Gene expression profiling from formalin‐fixed paraffin‐embedded tumors of pediatric glioblastoma. Clin. Cancer. Res. 13:6284‐6292. doi: 10.1158/1078-0432.CCR-07-0525.
  Heppner, G.H. 1984. Tumor heterogeneity. Cancer Res. 44:2259‐2265.
  Hertwig, F., Meyer, K., Braun, S., Ek, S., Spang, R., Pfenninger, C.V., Artner, I., Prost, G., Chen, X., Biegel, J.A., Judkins, A.R., Englund, E., and Nuber, U.A. 2012. Definition of genetic events directing the development of distinct types of brain tumors from postnatal neural stem/progenitor cells. Cancer Res. 72:3381‐3392. doi: 10.1158/0008-5472.CAN-11-3525.
  Holland, E.C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R.E., and Fuller, G.N. 2000. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet. 25:55‐57. doi: 10.1038/75596.
  Holmen, S.L. and Williams, B.O. 2005. Essential role for Ras signaling in glioblastoma maintenance. Cancer Res. 65:8250‐8255. doi: 10.1158/0008-5472.CAN-05-1173.
  Ivics, Z. and Izsvak, Z. 2005. A whole lotta jumpin' goin' on: New transposon tools for vertebrate functional genomics. Trends Genet. 21:8‐11. doi: 10.1016/j.tig.2004.11.008.
  Jacques, T.S., Swales, A., Brzozowski, M.J., Henriquez, N.V., Linehan, J.M., Mirzadeh, Z., C, O.M., Naumann, H., Alvarez‐Buylla, A., and Brandner, S. 2010. Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. Embo. J. 29:222‐235. doi: 10.1038/emboj.2009.327.
  Jones, T.S. and Holland, E.C. 2011. Animal models for glioma drug discovery. Expert Opin. Drug Discov. 6:1271‐1283. doi: 10.1517/17460441.2011.632628.
  Kaspar, B.K., Vissel, B., Bengoechea, T., Crone, S., Randolph‐Moore, L., Muller, R., Brandon, E.P., Schaffer, D., Verma, I.M., Lee, K.F., Heinemann, S.F., and Gage, F.H. 2002. Adeno‐associated virus effectively mediates conditional gene modification in the brain. Proc. Natl. Acad. Sci. U.S.A. 99:2320‐2325. doi: 10.1073/pnas.042678699.
  Kawakami, K. 2007. Tol2: A versatile gene transfer vector in vertebrates. Genome Biol. 8(Suppl 1):S7. doi: 10.1186/gb-2007-8-s1-s7.
  Kawasaki, H., Iwai, L., and Tanno, K. 2012. Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation. Mol. Brain 5:24. doi: 10.1186/1756-6606-5-24.
  Kawasaki, H., Toda, T., and Tanno, K. 2013. In vivo genetic manipulation of cortical progenitors in gyrencephalic carnivores using in utero electroporation. Biol. Open 2:95‐100. doi: 10.1242/bio.20123160.
  Kulik, G. and Weber, M.J. 1998. Akt‐dependent and ‐independent survival signaling pathways utilized by insulin‐like growth factor I. Mol. Cell Biol. 18:6711‐6718. doi: 10.1128/MCB.18.11.6711.
  Kwon, C.H., Zhao, D., Chen, J., Alcantara, S., Li, Y., Burns, D.K., Mason, R.P., Lee, E.Y., Wu, H., and Parada, L.F. 2008. Pten haploinsufficiency accelerates formation of high‐grade astrocytomas. Cancer Res. 68:3286‐3294. doi: 10.1158/0008-5472.CAN-07-6867.
  Lei, L., Sonabend, A.M., Guarnieri, P., Soderquist, C., Ludwig, T., Rosenfeld, S., Bruce, J.N., and Canoll, P. 2011. Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype. PLoS ONE 6:e20041. doi: 10.1371/journal.pone.0020041.
  Li, Z., Michael, I.P., Zhou, D., Nagy, A., and Rini, J.M. 2013. Simple piggyBac transposon‐based mammalian cell expression system for inducible protein production. Proc. Natl. Acad. Sci. U.S.A. 110:5004‐5009. doi: 10.1073/pnas.1218620110.
  Liu, C., Sage, J.C., Miller, M.R., Verhaak, R.G., Hippenmeyer, S., Vogel, H., Foreman, O., Bronson, R.T., Nishiyama, A., Luo, L., and Zong, H. 2011. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209‐221. doi: 10.1016/j.cell.2011.06.014.
  LoTurco, J., Manent, J.B., and Sidiqi, F. 2009. New and improved tools for in utero electroporation studies of developing cerebral cortex. Cereb. Cortex 19(Suppl 1):i120‐125. doi: 10.1093/cercor/bhp033.
  Maher, B.J. and LoTurco, J.J. 2012. Disrupted‐in‐schizophrenia (DISC1) functions presynaptically at glutamatergic synapses. PLoS ONE 7:e34053. doi: 10.1371/journal.pone.0034053.
  Martelotto, L.G., Ng, C.K., Piscuoglio, S., Weigelt, B., and Reis‐Filho, J.S. 2014. Breast cancer intra‐tumor heterogeneity. Breast Cancer Res. 16(3):210. doi: 10.1186/bcr3658.
  Marumoto, T., Tashiro, A., Friedmann‐Morvinski, D., Scadeng, M., Soda, Y., Gage, F.H., and Verma, I.M. 2009. Development of a novel mouse glioma model using lentiviral vectors. Nat. Med. 15:110‐116. doi: 10.1038/nm.1863.
  Marusyk, A., Almendro, V., and Polyak, K. 2012. Intra‐tumour heterogeneity: A looking glass for cancer? Nat. Rev. Cancer 12:323‐334. doi: 10.1038/nrc3261.
  McGranahan, N. and Swanton, C. 2015. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27:15‐26. doi: 10.1016/j.ccell.2014.12.001.
  Persson, A.I., Petritsch, C., Swartling, F.J., Itsara, M., Sim, F.J., Auvergne, R., Goldenberg, D.D., Vandenberg, S.R., Nguyen, K.N., Yakovenko, S., Ayers‐Ringler, J., Nishiyama, A., Stallcup, W.B., Berger, M.S., Bergers, G., McKnight, T.R., Goldman, S.A., and Weiss, W.A. 2010. Non‐stem cell origin for oligodendroglioma. Cancer Cell 18:669‐682. doi: 10.1016/j.ccr.2010.10.033.
  Rich, J.N. and Bigner, D.D. 2004. Development of novel targeted therapies in the treatment of malignant glioma. Nat. Rev. Drug Discov. 3:430‐446. doi: 10.1038/nrd1380.
  Saito, T. and Nakatsuji, N. 2001. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240:237‐246. doi: 10.1006/dbio.2001.0439.
  Saridey, S.K., Liu, L., Doherty, J.E., Kaja, A., Galvan, D.L., Fletcher, B.S., and Wilson, M.H. 2009. PiggyBac transposon‐based inducible gene expression in vivo after somatic cell gene transfer. Mol. Ther. 17:2115‐2120. doi: 10.1038/mt.2009.234.
  Siddiqi, F., Chen, F., Aron, A.W., Fiondella, C.G., Patel, K., and Loturco, J.J. 2014. Fate mapping by piggyBac transposase reveals that neocortical GLAST+ progenitors generate more astrocytes than nestin +progenitors in rat neocortex. Cereb. Cortex. 24:508‐520. doi: 10.1093/cercor/bhs332.
  Sturm, D., Witt, H., Hovestadt, V., Khuong‐Quang, D.A., Jones, D.T., Konermann, C., Pfaff, E., Tonjes, M., Sill, M., Bender, S., Kool, M., Zapatka, M., Becker, N., Zucknick, M., Hielscher, T., Liu, X.Y., Fontebasso, A.M., Ryzhova, M., Albrecht, S., Jacob, K., Wolter, M., Ebinger, M., Schuhmann, M.U., van Meter, T., Fruhwald, M.C., Hauch, H., Pekrun, A., Radlwimmer, B., Niehues, T., von Komorowski, G., Durken, M., Kulozik, A.E., Madden, J., Donson, A., Foreman, N.K., Drissi, R., Fouladi, M., Scheurlen, W., von Deimling, A., Monoranu, C., Roggendorf, W., Herold‐Mende, C., Unterberg, A., Kramm, C.M., Felsberg, J., Hartmann, C., Wiestler, B., Wick, W., Milde, T., Witt, O., Lindroth, A.M., Schwartzentruber, J., Faury, D., Fleming, A., Zakrzewska, M., Liberski, P.P., Zakrzewski, K., Hauser, P., Garami, M., Klekner, A., Bognar, L., Morrissy, S., Cavalli, F., Taylor, M.D., van Sluis, P., Koster, J., Versteeg, R., Volckmann, R., Mikkelsen, T., Aldape, K., Reifenberger, G., Collins, V.P., Majewski, J., Korshunov, A., Lichter, P., Plass, C., Jabado, N., and Pfister, S.M. 2012. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425‐437. doi: 10.1016/j.ccr.2012.08.024.
  Swartling, F.J., Savov, V., Persson, A.I., Chen, J., Hackett, C.S., Northcott, P.A., Grimmer, M.R., Lau, J., Chesler, L., Perry, A., Phillips, J.J., Taylor, M.D., and Weiss, W.A. 2012. Distinct neural stem cell populations give rise to disparate brain tumors in response to N‐MYC. Cancer Cell 21:601‐613. doi: 10.1016/j.ccr.2012.04.012.
  Tabata, H. and Nakajima, K. 2001. Efficient in utero gene transfer system to the developing mouse brain using electroporation: Visualization of neuronal migration in the developing cortex. Neuroscience 103:865‐872. doi: 10.1016/S0306-4522(01)00016-1.
  Uhrbom, L., Nerio, E., and Holland, E.C. 2004. Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model. Nat. Med. 10:1257‐1260. doi: 10.1038/nm1120.
  Uhrbom, L., Hesselager, G., Nister, M., and Westermark, B. 1998. Induction of brain tumors in mice using a recombinant platelet‐derived growth factor B‐chain retrovirus. Cancer Res. 58:5275‐5279.
  Uhrbom, L., Dai, C., Celestino, J.C., Rosenblum, M.K., Fuller, G.N., and Holland, E.C. 2002. Ink4a‐Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res. 62:5551‐5558.
  Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., Ding, L., Golub, T., Mesirov, J.P., Alexe, G., Lawrence, M., O'Kelly, M., Tamayo, P., Weir, B.A., Gabriel, S., Winckler, W., Gupta, S., Jakkula, L., Feiler, H.S., Hodgson, J.G., James, C.D., Sarkaria, J.N., Brennan, C., Kahn, A., Spellman, P.T., Wilson, R.K., Speed, T.P., Gray, J.W., Meyerson, M., Getz, G., Perou, C.M., and Hayes, D.N. 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98‐110. doi: 10.1016/j.ccr.2009.12.020.
  Visvader, J.E. 2011. Cells of origin in cancer. Nature 469:314‐322. doi: 10.1038/nature09781.
  Wei, Q., Clarke, L., Scheidenhelm, D.K., Qian, B., Tong, A., Sabha, N., Karim, Z., Bock, N.A., Reti, R., Swoboda, R., Purev, E., Lavoie, J.F., Bajenaru, M.L., Shannon, P., Herlyn, D., Kaplan, D., Henkelman, R.M., Gutmann, D.H., and Guha, A. 2006. High‐grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res. 66:7429‐7437. doi: 10.1158/0008-5472.CAN-06-0712.
  Wiesner, S.M., Decker, S.A., Larson, J.D., Ericson, K., Forster, C., Gallardo, J.L., Long, C., Demorest, Z.L., Zamora, E.A., Low, W.C., SantaCruz, K., Largaespada, D.A., and Ohlfest, J.R. 2009. De novo induction of genetically engineered brain tumors in mice using plasmid DNA. Cancer Res. 69:431‐439. doi: 10.1158/0008-5472.CAN-08-1800.
  Wu, S., Ying, G., Wu, Q., and Capecchi, M.R. 2007. Toward simpler and faster genome‐wide mutagenesis in mice. Nat. Genet. 39:922‐930. doi: 10.1038/ng2060.
  Yamamoto, N., Tsuchiya, H., and Hoffman, R.M. 2011. Tumor imaging with multicolor fluorescent protein expression. Int. J. Clin. Oncol. 16:84‐91. doi: 10.1007/s10147-011-0201-y.
  Yang, M., Baranov, E., Wang, J.W., Jiang, P., Wang, X., Sun, F.X., Bouvet, M., Moossa, A.R., Penman, S., and Hoffman, R.M. 2002. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc. Natl. Acad. Sci. U.S.A. 99:3824‐3829. doi: 10.1073/pnas.052029099.
  Yang, M., Baranov, E., Jiang, P., Sun, F.X., Li, X.M., Li, L., Hasegawa, S., Bouvet, M., Al‐Tuwaijri, M., Chishima, T., Shimada, H., Moossa, A.R., Penman, S., and Hoffman, R.M. 2000. Whole‐body optical imaging of green fluorescent protein‐expressing tumors and metastases. Proc. Natl. Acad. Sci. U.S.A. 97:1206‐1211. doi: 10.1073/pnas.97.3.1206.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library