Overview of Genetically Engineered Mouse Models of Distinct Breast Cancer Subtypes

Jerry Usary1, David Brian Darr1, Adam D. Pfefferle1, Charles M. Perou1

1 Deptartment of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, N.C.
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 14.38
DOI:  10.1002/0471141755.ph1438s72
Online Posting Date:  March, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Advances in the screening of new therapeutic options have significantly reduced the breast cancer death rate over the last decade. Despite these advances, breast cancer remains the second leading cause of cancer death among women. This is due in part to the complexity of the disease, which is characterized by multiple subtypes that are driven by different genetic mechanisms and that likely arise from different cell types of origin. Because these differences often drive treatment options and outcomes, it is important to select relevant preclinical model systems to study new therapeutic interventions and tumor biology. Described in this unit are the characteristics and applications of validated genetically engineered mouse models (GEMMs) of basal‐like, luminal, and claudin‐low human subtypes of breast cancer. These different subtypes have different clinical outcomes and require different treatment strategies. These GEMMs can be considered faithful surrogates of their human disease counterparts. They represent alternative preclinical tumor models to cell line and patient‐derived xenografts for preclinical drug discovery and tumor biology studies. © 2016 by John Wiley & Sons, Inc.

Keywords: gene expression; breast cancer; mouse models; drug testing; efficacy prediction

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • GEMM Characterization
  • Translational Application of GEMMs
  • Summary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Beaver, J.A., Amiri‐Kordestani, L., Charlab, R., Chen, W., Palmby, T., Tilley, A., Zirkelbach, J.F., Yu, J., Liu, Q., Zhao, L., Crich, J., Chen, X.H., Hughes, M., Bloomquist, E., Tang, S., Sridhara, R., Kluetz, P.G., Kim, G., Ibrahim, A., Pazdur, R., and Cortazar, P. 2015. FDA Approval: Palbociclib for the treatment of postmenopausal patients with estrogen receptor‐positive, HER2‐negative metastatic breast cancer. Clin. Cancer Res. 21:4760‐4766. doi: 10.1158/1078-0432.CCR-15-1185.
  Carey, L.A., Perou, C.M., Livasy, C.A., Dressler, L.G., Cowan, D., Conway, K., Karaca, G., Troester, M.A., Tse, C.K., Edmiston, S., Deming, S.L., Geradts, J., Cheang, M.C., Nielsen, T.O., Moorman, P.G., Earp, H.S., and Millikan, R.C. 2006. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492‐2502. doi: 10.1001/jama.295.21.2492.
  Chen, Z., Cheng, K., Walton, Z., Wang, Y., Ebi, H., Shimamura, T., Liu, Y., Tupper, T., Ouyang, J., Li, J., Gao, P., Woo, M.S., Xu, C., Yanagita, M., Altabef, A., Wang, S., Lee, C., Nakada, Y., Pena, C.G., Sun, Y., Franchetti, Y., Yao, C., Saur, A., Cameron, M.D., Nishino, M., Hayes, D.N., Wilkerson, M.D., Roberts, P.J., Lee, C.B., Bardeesy, N., Butaney, M., Chirieac, L.R., Costa, D.B., Jackman, D., Sharpless, N.E., Castrillon, D.H., Demetri, G.D., Janne, P.A., Pandolfi, P.P., Cantley, L.C., Kung, A.L., Engelman, J.A., and Wong, K.K. 2012. A murine lung cancer co‐clinical trial identifies genetic modifiers of therapeutic response. Nature 483:613‐617. doi: 10.1038/nature10937.
  Criscitiello, C. and Curigliano, G. 2015. Immunotherapy of breast cancer. Prog. Tumor Res. 42:30‐43. doi: 10.1159/000437183.
  Dickson, M.A. and Schwartz, G.K. 2009. Development of cell‐cycle inhibitors for cancer therapy. Curr. Oncol. 16:36‐43.
  Duncan, J.S., Whittle, M.C., Nakamura, K., Abell, A.N., Midland, A.A., Zawistowski, J.S., Johnson, N.L., Granger, D.A., Jordan, N.V., Darr, D.B., Usary, J., Kuan, P.F., Smalley, D.M., Major, B., He, X., Hoadley, K.A., Zhou, B., Sharpless, N.E., Perou, C.M., Kim, W.Y., Gomez, S.M., Chen, X., Jin, J., Frye, S.V., Earp, H.S., Graves, L.M., and Johnson, G.L. 2012. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple‐negative breast cancer. Cell 149:307‐321. doi: 10.1016/j.cell.2012.02.053.
  Gao, H., Korn, J.M., Ferretti, S., Monahan, J.E., Wang, Y., Singh, M., Zhang, C., Schnell, C., Yang, G., Zhang, Y., Balbin, O.A., Barbe, S., Cai, H., Casey, F., Chatterjee, S., Chiang, D.Y., Chuai, S., Cogan, S.M., Collins, S.D., Dammassa, E., Ebel, N., Embry, M., Green, J., Kauffmann, A., Kowal, C., Leary, R.J., Lehar, J., Liang, Y., Loo, A., Lorenzana, E., Robert McDonald, E., 3rd, McLaughlin, M.E., Merkin, J., Meyer, R., Naylor, T.L., Patawaran, M., Reddy, A., Roelli, C., Ruddy, D.A., Salangsang, F., Santacroce, F., Singh, A.P., Tang, Y., Tinetto, W., Tobler, S., Velazquez, R., Venkatesan, K., Von Arx, F., Wang, H.Q., Wang, Z., Wiesmann, M., Wyss, D., Xu, F., Bitter, H., Atadja, P., Lees, E., Hofmann, F., Li, E., Keen, N., Cozens, R., Jensen, M.R., Pryer, N.K., Williams, J.A., and Sellers, W.R. 2015. High‐throughput screening using patient‐derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21:1318‐1325. doi: 10.1038/nm.3954.
  Gruvberger, S., Ringner, M., Chen, Y., Panavally, S., Saal, L.H., Borg, A., Ferno, M., Peterson, C., and Meltzer, P.S. 2001. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res. 61:5979‐5984.
  Guy, C.T., Webster, M.A., Schaller, M., Parsons, T.J., Cardiff, R.D., and Muller, W.J. 1992. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. U.S.A. 89:10578‐10582.
  Hanahan, D., Wagner, E.F., and Palmiter, R.D. 2007. The origins of oncomice: A history of the first transgenic mice genetically engineered to develop cancer. Genes Dev. 21:2258‐2270. doi: 10.1101/gad.1583307.
  He, Z., Schulz, A., Wan, X., Seitz, J., Bludau, H., Alakhova, D.Y., Darr, D.B., Perou, C.M., Jordan, R., Ojima, I., Kabanov, A.V., and Luxenhofer, R. 2015. Poly(2‐oxazoline) based micelles with high capacity for 3rd generation taxoids: Preparation, in vitro and in vivo evaluation. J. Control. Release 208:67‐75. doi: 10.1016/j.jconrel.2015.02.024.
  Herschkowitz, J.I., Zhao, W., Zhang, M., Usary, J., Murrow, G., Edwards, D., Knezevic, J., Greene, S.B., Darr, D., Troester, M.A., Hilsenbeck, S.G., Medina, D., Perou, C.M., and Rosen, J.M. 2012. Comparative oncogenomics identifies breast tumors enriched in functional tumor‐initiating cells. Proc. Natl. Acad. Sci. U.S.A. 109:2778‐2783. doi: 10.1073/pnas.1018862108.
  Herschkowitz, J.I., Simin, K., Weigman, V.J., Mikaelian, I., Usary, J., Hu, Z., Rasmussen, K.E., Jones, L.P., Assefnia, S., Chandrasekharan, S., Backlund, M.G., Yin, Y., Khramtsov, A.I., Bastein, R., Quackenbush, J., Glazer, R.I., Brown, P.H., Green, J.E., Kopelovich, L., Furth, P.A., Palazzo, J.P., Olopade, O.I., Bernard, P.S., Churchill, G.A., Van Dyke, T., and Perou, C.M. 2007. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8:R76. doi: 10.1186/gb-2007-8-5-r76.
  Hoadley, K.A., Yau, C., Wolf, D.M., Cherniack, A.D., Tamborero, D., Ng, S., Leiserson, M.D., Niu, B., McLellan, M.D., Uzunangelov, V., Zhang, J., Kandoth, C., Akbani, R., Shen, H., Omberg, L., Chu, A., Margolin, A.A., Van't Veer, L.J., Lopez‐Bigas, N., Laird, P.W., Raphael, B.J., Ding, L., Robertson, A.G., Byers, L.A., Mills, G.B., Weinstein, J.N., Van Waes, C., Chen, Z., Collisson, E.A., Cancer Genome Atlas Research, N., Benz, C.C., Perou, C.M., and Stuart, J.M. 2014. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158:929‐944. doi: 10.1016/j.cell.2014.06.049.
  Howe, M.K., Bodoor, K., Carlson, D.A., Hughes, P.F., Alwarawrah, Y., Loiselle, D.R., Jaeger, A.M., Darr, D.B., Jordan, J.L., Hunter, L.M., Molzberger, E.T., Gobillot, T.A., Thiele, D.J., Brodsky, J.L., Spector, N.L., and Haystead, T.A. 2014. Identification of an allosteric small‐molecule inhibitor selective for the inducible form of heat shock protein 70. Chem. Biol. 21:1648‐1659. doi: 10.1016/j.chembiol.2014.10.016.
  Jerry, D.J., Kittrell, F.S., Kuperwasser, C., Laucirica, R., Dickinson, E.S., Bonilla, P.J., Butel, J.S., and Medina, D. 2000. A mammary‐specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene 19:1052‐1058. doi: 10.1038/sj.onc.1203270.
  Karn, T., Pusztai, L., Rody, A., Holtrich, U., and Becker, S. 2015. The influence of host factors on the prognosis of breast cancer: Stroma and immune cell components as cancer biomarkers. Curr. Cancer Drug Targets 15:652‐664. doi: 10.2174/156800961508151001101209.
  Lehmann, B.D. and Pietenpol, J.A. 2015. Clinical implications of molecular heterogeneity in triple negative breast cancer. Breast 24(Supp. 2):S36‐S40. doi: 10.1016/j.breast.2015.07.009.
  Liu, M.L., Shibata, M.A., Von Lintig, F.C., Wang, W., Cassenaer, S., Boss, G.R., and Green, J.E. 2001. Haploid loss of Ki‐ras delays mammary tumor progression in C3 (1)/SV40 Tag transgenic mice. Oncogene 20:2044‐2049. doi: 10.1038/sj.onc.1204280.
  Lunardi, A., Ala, U., Epping, M.T., Salmena, L., Clohessy, J.G., Webster, K.A., Wang, G., Mazzucchelli, R., Bianconi, M., Stack, E.C., Lis, R., Patnaik, A., Cantley, L.C., Bubley, G., Cordon‐Cardo, C., Gerald, W.L., Montironi, R., Signoretti, S., Loda, M., Nardella, C., and Pandolfi, P.P. 2013. A co‐clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer. Nat. Genet. 45:747‐755. doi: 10.1038/ng.2650.
  Maroulakou, I.G., Anver, M., Garrett, L., and Green, J.E. 1994. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc. Natl. Acad. Sci. U.S.A. 91:11236‐11240. doi: 10.1073/pnas.91.23.11236.
  Mayer, E.L. 2015. Targeting breast cancer with CDK inhibitors. Curr. Oncol. Rep. 17:443. doi: 10.1007/s11912-015-0443-3.
  Muller, W.J., Arteaga, C.L., Muthuswamy, S.K., Siegel, P.M., Webster, M.A., Cardiff, R.D., Meise, K.S., Li, F., Halter, S.A., and Coffey, R.J. 1996. Synergistic interaction of the Neu proto‐oncogene product and transforming growth factor alpha in the mammary epithelium of transgenic mice. Mol. Cell. Biol. 16:5726‐5736. doi: 10.1128/MCB.16.10.5726.
  Nardella, C., Lunardi, A., Patnaik, A., Cantley, L.C., and Pandolfi, P.P. 2011. The APL paradigm and the “co‐clinical trial” project. Cancer Discov. 1:108‐116. doi: 10.1158/2159-8290.CD-11-0061.
  Nishino, M., Jagannathan, J.P., Ramaiya, N.H., and Van den Abbeele, A.D. 2010. Revised RECIST guideline version 1.1: What oncologists want to know and what radiologists need to know. Am. J. Roentgenol. 195:281‐289. doi: 10.2214/AJR.09.4110.
  Perrin, S. 2014. Preclinical research: Make mouse studies work. Nature 507:423‐425. doi: 10.1038/507423a.
  Pfefferle, A.D., Herschkowitz, J.I., Usary, J., Harrell, J.C., Spike, B.T., Adams, J.R., Torres‐Arzayus, M.I., Brown, M., Egan, S.E., Wahl, G.M., Rosen, J.M., and Perou, C.M. 2013. Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biol. 14:R125. doi: 10.1186/gb-2013-14-11-r125.
  Pletnikov, M.V. 2009. Inducible and conditional transgenic mouse models of schizophrenia. Prog. Brain Res. 179:35‐47. doi: 10.1016/S0079-6123(09)17905-0.
  Prat, A., Adamo, B., Cheang, M.C., Anders, C.K., Carey, L.A., and Perou, C.M. 2013. Molecular characterization of basal‐like and non‐basal‐like triple‐negative breast cancer. Oncologist 18:123‐133. doi: 10.1634/theoncologist.2012-0397.
  Prat, A., Parker, J.S., Karginova, O., Fan, C., Livasy, C., Herschkowitz, J.I., He, X., and Perou, C.M. 2010. Phenotypic and molecular characterization of the claudin‐low intrinsic subtype of breast cancer. Breast Cancer Res. 12:R68. doi: 10.1186/bcr2635.
  Prat, A., Pineda, E., Adamo, B., Galvan, P., Fernandez, A., Gaba, L., Diez, M., Viladot, M., Arance, A., and Munoz, M. 2015. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 24(Supp. 2):S26‐S35. doi: 10.1016/j.breast.2015.07.008.
  Roberts, P.J., Bisi, J.E., Strum, J.C., Combest, A.J., Darr, D.B., Usary, J.E., Zamboni, W.C., Wong, K.K., Perou, C.M., and Sharpless, N.E. 2012a. Multiple roles of cyclin‐dependent kinase 4/6 inhibitors in cancer therapy. J. Natl. Cancer Inst. 104:476‐487. doi: 10.1093/jnci/djs002.
  Roberts, P.J., Usary, J.E., Darr, D.B., Dillon, P.M., Pfefferle, A.D., Whittle, M.C., Duncan, J.S., Johnson, S.M., Combest, A.J., Jin, J., Zamboni, W.C., Johnson, G.L., Perou, C.M., and Sharpless, N.E. 2012b. Combined PI3K/mTOR and MEK inhibition provides broad antitumor activity in faithful murine cancer models. Clin. Cancer Res. 18:5290‐5303. doi: 10.1158/1078-0432.CCR-12-0563.
  Ross, D.T. and Perou, C.M. 2001. A comparison of gene expression signatures from breast tumors and breast tissue derived cell lines. Dis. Markers 17:99‐109. doi: 10.1155/2001/850531.
  Ross, D.T., Scherf, U., Eisen, M.B., Perou, C.M., Rees, C., Spellman, P., Iyer, V., Jeffrey, S.S., Van de Rijn, M., Waltham, M., Pergamenschikov, A., Lee, J.C., Lashkari, D., Shalon, D., Myers, T.G., Weinstein, J.N., Botstein, D., and Brown, P.O. 2000. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24:227‐235. doi: 10.1038/73432.
  Sausville, E., Lorusso, P., Carducci, M., Carter, J., Quinn, M.F., Malburg, L., Azad, N., Cosgrove, D., Knight, R., Barker, P., Zabludoff, S., Agbo, F., Oakes, P., and Senderowicz, A. 2014. Phase I dose‐escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother. Pharmacol. 73:539‐549. doi: 10.1007/s00280-014-2380-5.
  SEER. 2012. Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute, http://seer.cancer.gov/data.
  Silva, G.O., He, X., Parker, J.S., Gatza, M.L., Carey, L.A., Hou, J.P., Moulder, S.L., Marcom, P.K., Ma, J., Rosen, J.M., and Perou, C.M. 2015. Cross‐species DNA copy number analyses identifies multiple 1q21‐q23 subtype‐specific driver genes for breast cancer. Breast Cancer Res. Treat. 152:347‐356. doi: 10.1007/s10549-015-3476-2.
  Siolas, D. and Hannon, G.J. 2013. Patient‐derived tumor xenografts: Transforming clinical samples into mouse models. Cancer Res. 73:5315‐5319. doi: 10.1158/0008-5472.CAN-13-1069.
  Sorlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Thorsen, T., Quist, H., Matese, J.C., Brown, P.O., Botstein, D., Lonning, P.E., and Borresen‐Dale, A.L. 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. U.S.A. 98:10869‐10874. doi: 10.1073/pnas.191367098.
  Troester, M.A., Herschkowitz, J.I., Oh, D.S., He, X., Hoadley, K.A., Barbier, C.S., and Perou, C.M. 2006. Gene expression patterns associated with p53 status in breast cancer. BMC Cancer 6:276. doi: 10.1186/1471-2407-6-276.
  Turner, N.C., Ro, J., Andre, F., Loi, S., Verma, S., Iwata, H., Harbeck, N., Loibl, S., Huang Bartlett, C., Zhang, K., Giorgetti, C., Randolph, S., Koehler, M., and Cristofanilli, M. 2015. Palbociclib in hormone‐receptor‐positive advanced breast cancer. N. Engl. J. Med. 373:209‐219. doi: 10.1056/NEJMoa1505270.
  Usary, J., Zhao, W., Darr, D., Roberts, P.J., Liu, M., Balletta, L., Karginova, O., Jordan, J., Combest, A., Bridges, A., Prat, A., Cheang, M.C., Herschkowitz, J.I., Rosen, J.M., Zamboni, W., Sharpless, N.E., and Perou, C.M. 2013. Predicting drug responsiveness in human cancers using genetically engineered mice. Clin. Cancer Res. 19:4889‐4899. doi: 10.1158/1078-0432.CCR-13-0522.
  Yao, J., Caballero, O.L., Yung, W.K., Weinstein, J.N., Riggins, G.J., Strausberg, R.L., and Zhao, Q. 2014. Tumor subtype‐specific cancer‐testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol. Res. 2:371‐379. doi: 10.1158/2326-6066.CIR-13-0088.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library