Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs)

Andrew Dunbar1, Abbas Nazir1, Ross Levine2

1 Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York, 2 Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York City, New York
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 14.40
DOI:  10.1002/cpph.23
Online Posting Date:  June, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Myeloproliferative neoplasms (MPNs) are a class of hematologic diseases characterized by aberrant proliferation of one or more myeloid lineages and progressive bone marrow fibrosis. In 2005, seminal work by multiple groups identified the JAK2V617F mutation in a significant fraction of MPN patients. Since that time, murine models of JAK2V617F have greatly enhanced the understanding of the role of aberrant JAK‐STAT signaling in MPN pathogenesis and have provided an in vivo pre‐clinical platform that can be used to develop novel therapies. From early retroviral transduction models to transgenics, and ultimately conditional knock‐ins, murine models have established that JAK2V617F alone can induce an MPN‐like syndrome in vivo. However, additional mutations co‐occur with JAK2V617F in MPNs, often in proteins involved in epigenetic regulation that can dramatically influence disease outcomes. In vivo modeling of these mutations in the context of JAK2V617F has provided additional insights into the role of epigenetic dysregulation in augmenting MPN hematopoiesis. In this overview, early murine model development of JAK2V617F is described, with an analysis of its effects on the hematopoietic stem/progenitor cell niche and interactions with downstream signaling elements. This is followed by a description of more recent in vivo models developed for evaluating the effect of concomitant mutations in epigenetic modifiers on MPN maintenance and progression. Mouse models of other driver mutations in MPNs, including primarily calreticulin (CALR) and Tpo‐receptor (MPL), which occur in a significant percentage of MPN patients with wild‐type JAK2, are also briefly reviewed. © 2017 by John Wiley & Sons, Inc.

Keywords: leukemia; JAK2; myeloproliferative neoplasms; epigenetics

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Retroviral Transduction Models
  • Transgenic Models of MPN
  • Knock‐in Models
  • Evaluation of the Hematopoietic Stem Cell (HSC) Compartment
  • Signaling Pathway Analysis
  • Mutations in Epigenetic Modifiers in V617F MPNS
  • CALR and MPL Mutant MPN Models
  • Murine Models in the Pre‐Clinical Evaluation of MPN Therapies
  • Conclusions
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Abdel‐Wahab, O., Mullally, A., Hedvat, C., Garcia‐Manero, G., Patel, J., Wadleigh, M., … Levine, R. L. (2009). Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood, 114(1), 144–147. doi: 10.1182/blood‐2009‐03‐210039.
  Abdel‐Wahab, O., Manshouri, T., Patel, J., Harris, K., Yao, J., Hedvat, C., … Verstovsek, S. (2010). Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Research, 70(2), 447–452. doi: 10.1158/0008‐5472.CAN‐09‐3783.
  Adamson, J. W., Fialkow, P. J., Murphy, S., Prchal, J. F., & Steinmann, L. (1976). Polycythemia vera: Stem‐cell and probable clonal origin of the disease. The New England Journal of Medicine, 295(17), 913–916. doi: 10.1056/NEJM197610212951702.
  Akada, H., Akada, S., Hutchison, R. E., Sakamoto, K., Wagner, K. U., & Mohi, G. (2014). Critical role of Jak2 in the maintenance and function of adult hematopoietic stem cells. Stem Cells, 32(7), 1878–1889. doi: 10.1002/stem.1711.
  Akada, H., Akada, S., Gajra, A., Bair, A., Graziano, S., Hutchison, R. E., & Mohi, G. (2012). Efficacy of vorinostat in a murine model of polycythemia vera. Blood, 119(16), 3779–3789. doi: 10.1182/blood‐2011‐02‐336743.
  Akada, H., Yan, D., Zou, H., Fiering, S., Hutchison, R. E., & Mohi, M. G. (2010). Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera‐like disease. Blood, 115(17), 3589–3597. doi: 10.1182/blood‐2009‐04‐215848.
  Anand, S., Stedham, F., Beer, P., Gudgin, E., Ortmann, C. A., Bench, A., … Huntly, B. J. (2011a). Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood, 118(1), 177–181. doi: 10.1182/blood‐2010‐12‐327593.
  Anand, S., Stedham, F., Gudgin, E., Campbell, P., Beer, P., Green, A. R., & Huntly, B. J. (2011b). Increased basal intracellular signaling patterns do not correlate with JAK2 genotype in human myeloproliferative neoplasms. Blood, 118(6), 1610–1621. doi: 10.1182/blood‐2011‐02‐335042.
  Araki, M., Yang, Y., Masubuchi, N., Hironaka, Y., Takei, H., Morishita, S., … Komatsu, N. (2016). Activation of the thrombopoietin receptor by mutant calreticulin in CALR‐mutant myeloproliferative neoplasms. Blood, 127(10), 1307–1316. doi: 10.1182/blood‐2015‐09‐671172.
  Barbui, T., Barosi, G., Grossi, A., Gugliotta, L., Liberato, L. N., Marchetti, M., … Tura, S. (2004). Practice guidelines for the therapy of essential thrombocythemia. A statement from the Italian Society of Hematology, the Italian Society of Experimental Hematology and the Italian Group for Bone Marrow Transplantation. Haematologica, 89(2), 215–232.
  Baxter, E. J., Scott, L. M., Campbell, P. J., East, C., Fourouclas, N., Swanton, S., … Cancer Genome Project. (2005). Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet, 365(9464), 1054–1061. doi: 10.1016/S0140‐6736(05)71142‐9.
  Beer, P. A., Delhommeau, F., LeCouedic, J. P., Dawson, M. A., Chen, E., Bareford, D., … Green, A. R. (2010). Two routes to leukemic transformation after a JAK2 mutation‐positive myeloproliferative neoplasm. Blood, 115(14), 2891–2900. doi: 10.1182/blood‐2009‐08‐236596.
  Bhagwat, N., Koppikar, P., Keller, M., Marubayashi, S., Shank, K., Rampal, R., … Levine, R. L. (2014). Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms. Blood, 123(13), 2075–2083. doi: 10.1182/blood‐2014‐01‐547760.
  Bresnick, A. R., Weber, D. J., & Zimmer, D. B. (2015). S100 proteins in cancer. Nature Reviews Cancer, 15(2), 96–109. doi: 10.1038/nrc3893.
  Bumm, T. G., Elsea, C., Corbin, A. S., Loriaux, M., Sherbenou, D., Wood, L., … Deininger, M. W. (2006). Characterization of murine JAK2V617F‐positive myeloproliferative disease. Cancer Research, 66(23), 11156–11165. doi: 10.1158/0008‐5472.CAN‐06‐2210.
  Butcher, C. M., Hutton, J. F., Hahn, U., To, L. B., Bardy, P., Lewis, I., & D'Andrea, R. J. (2007). Cellular origin and lineage specificity of the JAK2(V617F) allele in polycythemia vera. Blood, 109(1), 386–387. doi: 10.1182/blood‐2006‐07‐036426.
  Cabagnols, X., Defour, J. P., Ugo, V., Ianotto, J. C., Mossuz, P., Mondet, J., … Bluteau, O. (2015). Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: Relevance for disease evolution. Leukemia, 29(1), 249–252. doi: 10.1038/leu.2014.270.
  Chen, E., Beer, P. A., Godfrey, A. L., Ortmann, C. A., Li, J., Costa‐Pereira, A. P., … Green, A. R. (2010). Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell, 18(5), 524–535. doi: 10.1016/j.ccr.2010.10.013.
  Chen, E., Schneider, R. K., Breyfogle, L. J., Rosen, E. A., Poveromo, L., Elf, S., … Mullally, A. (2015). Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms. Blood, 125(2), 327–335. doi:10.1182/blood‐2014‐04‐567024.
  Cocault, L., Bouscary, D., Le Bousse Kerdiles, C., Clay, D., Picard, F., Gisselbrecht, S., & Souyri, M. (1996). Ectopic expression of murine TPO receptor (c‐mpl) in mice is pathogenic and induces erythroblastic proliferation. Blood, 88(5), 1656–1665.
  Croker, B. A., Krebs, D. L., Zhang, J. G., Wormald, S., Willson, T. A., Stanley, E. G., … Alexander, W. S. (2003). SOCS3 negatively regulates IL‐6 signaling in vivo. Nature Immunology, 4(6), 540–545. doi: 10.1038/ni931.
  Dawson, M. A., Bannister, A. J., Gottgens, B., Foster, S. D., Bartke, T., Green, A. R., & Kouzarides, T. (2009). JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature, 461(7265), 819–822. doi: 10.1038/nature08448.
  Dawson, M. A., Foster, S. D., Bannister, A. J., Robson, S. C., Hannah, R., Wang, X., … Kouzarides, T. (2012). Three distinct patterns of histone H3Y41 phosphorylation mark active genes. Cell Reports, 2(3), 470–477. doi: 10.1016/j.celrep.2012.08.016.
  Delhommeau, F., Dupont, S., Della Valle, V., James, C., Trannoy, S., Masse, A., … Bernard, O. A. (2009). Mutation in TET2 in myeloid cancers. The New England Journal of Medicine, 360(22), 2289–2301. doi: 10.1056/NEJMoa0810069.
  Delhommeau, F., Dupont, S., Tonetti, C., Masse, A., Godin, I., Le Couedic, J. P., … Giraudier, S. (2007). Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood, 109(1), 71–77. doi: 10.1182/blood‐2006‐03‐007146.
  Dorritie, K. A., McCubrey, J. A., & Johnson, D. E. (2014). STAT transcription factors in hematopoiesis and leukemogenesis: Opportunities for therapeutic intervention. Leukemia, 28(2), 248–257. doi: 10.1038/leu.2013.192.
  Duek, A., Lundberg, P., Shimizu, T., Grisouard, J., Karow, A., Kubovcakova, L., … Skoda, R. C. (2014). Loss of Stat1 decreases megakaryopoiesis and favors erythropoiesis in a JAK2‐V617F‐driven mouse model of MPNs. Blood, 123(25), 3943–3950. doi: 10.1182/blood‐2013‐07‐514208.
  Dupont, S., Masse, A., James, C., Teyssandier, I., Lecluse, Y., Larbret, F., … Delhommeau, F. (2007). The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood, 110(3), 1013–1021. doi: 10.1182/blood‐2006‐10‐054940.
  Ecker, A., Simma, O., Hoelbl, A., Kenner, L., Beug, H., Moriggl, R., & Sexl, V. (2009). The dark and the bright side of Stat3: Proto‐oncogene and tumor‐suppressor. Frontiers in Bioscience (Landmark edition), 14, 2944–2958. doi: 10.2741/3425.
  Elf, S., Abdelfattah, N. S., Chen, E., Perales‐Paton, J., Rosen, E. A., Ko, A., … Mullally, A. (2016). Mutant calreticulin requires both its mutant C‐terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discovery, 6(4), 368–381. doi: 10.1158/2159‐8290.CD‐15‐1434.
  Grisouard, J., Hao‐Shen, H., Dirnhofer, S., Wagner, K. U., & Skoda, R. C. (2014). Selective deletion of Jak2 in adult mouse hematopoietic cells leads to lethal anemia and thrombocytopenia. Haematologica, 99(4), e52–54. doi: 10.3324/haematol.2013.100016.
  Grisouard, J., Shimizu, T., Duek, A., Kubovcakova, L., Hao‐Shen, H., Dirnhofer, S., & Skoda, R. C. (2015). Deletion of Stat3 in hematopoietic cells enhances thrombocytosis and shortens survival in a JAK2‐V617F mouse model of MPN. Blood, 125(13), 2131–2140. doi:10.1182/blood‐2014‐08‐594572.
  Guglielmelli, P., Biamonte, F., Score, J., Hidalgo‐Curtis, C., Cervantes, F., Maffioli, M., … Vannucchi, A. M. (2011). EZH2 mutational status predicts poor survival in myelofibrosis. Blood, 118(19), 5227–5234. doi: 10.1182/blood‐2011‐06‐363424.
  Hasan, S., Lacout, C., Marty, C., Cuingnet, M., Solary, E., Vainchenker, W., & Villeval, J. L. (2013). JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNalpha. Blood, 122(8), 1464–1477. doi: 10.1182/blood‐2013‐04‐498956.
  Huang, Z., Richmond, T. D., Muntean, A. G., Barber, D. L., Weiss, M. J., & Crispino, J. D. (2007). STAT1 promotes megakaryopoiesis downstream of GATA‐1 in mice. The Journal of Clinical Investigation, 117(12), 3890–3899. doi: 10.1172/JCI33010.
  Ishii, T., Bruno, E., Hoffman, R., & Xu, M. (2006). Involvement of various hematopoietic‐cell lineages by the JAK2V617F mutation in polycythemia vera. Blood, 108(9), 3128–3134. doi: 10.1182/blood‐2006‐04‐017392.
  Ishii, T., Zhao, Y., Sozer, S., Shi, J., Zhang, W., Hoffman, R., & Xu, M. (2007). Behavior of CD34+ cells isolated from patients with polycythemia vera in NOD/SCID mice. Experimental Hematology, 35(11), 1633–1640. doi: 10.1016/j.exphem.2007.07.005.
  James, C., Mazurier, F., Dupont, S., Chaligne, R., Lamrissi‐Garcia, I., Tulliez, M., … de Verneuil, H. (2008). The hematopoietic stem cell compartment of JAK2V617F‐positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood, 112(6), 2429–2438. doi: 10.1182/blood‐2008‐02‐137877.
  James, C., Ugo, V., Le Couedic, J. P., Staerk, J., Delhommeau, F., Lacout, C., … Vainchenker, W. (2005). A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature, 434(7037), 1144–1148. doi: 10.1038/nature03546.
  Jamieson, C. H., Gotlib, J., Durocher, J. A., Chao, M. P., Mariappan, M. R., Lay, M., … Weissman, I. L. (2006). The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proceedings of the National Academy of Sciences of the United States of America, 103(16), 6224–6229. doi: 10.1073/pnas.0601462103.
  Jenkins, B. J., Roberts, A. W., Greenhill, C. J., Najdovska, M., Lundgren‐May, T., Robb, L., … Ernst, M. (2007). Pathologic consequences of STAT3 hyperactivation by IL‐6 and IL‐11 during hematopoiesis and lymphopoiesis. Blood, 109(6), 2380–2388. doi: 10.1182/blood‐2006‐08‐040352.
  Jenkins, B. J., Roberts, A. W., Najdovska, M., Grail, D., & Ernst, M. (2005). The threshold of gp130‐dependent STAT3 signaling is critical for normal regulation of hematopoiesis. Blood, 105(9), 3512–3520. doi: 10.1182/blood‐2004‐09‐3751.
  Jones, A. V., Chase, A., Silver, R. T., Oscier, D., Zoi, K., Wang, Y. L., … Cross, N. C. (2009). JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nature Genetics, 41(4), 446–449. doi: 10.1038/ng.334.
  Jones, A. V., Kreil, S., Zoi, K., Waghorn, K., Curtis, C., Zhang, L., … Cross, N. C. (2005). Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood, 106(6), 2162–2168. doi: 10.1182/blood‐2005‐03‐1320.
  Kameda, T., Shide, K., Yamaji, T., Kamiunten, A., Sekine, M., Taniguchi, Y., … Shimoda, K. (2015). Loss of TET2 has dual roles in murine myeloproliferative neoplasms: Disease sustainer and disease accelerator. Blood, 125(2), 304–315. doi:10.1182/blood‐2014‐04‐555508.
  Kent, D. G., Li, J., Tanna, H., Fink, J., Kirschner, K., Pask, D. C., … Green, A. R. (2013). Self‐renewal of single mouse hematopoietic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion. PLoS Biology, 11(6), e1001576. doi: 10.1371/journal.pbio.1001576.
  Kilpivaara, O., Mukherjee, S., Schram, A. M., Wadleigh, M., Mullally, A., Ebert, B. L., … Levine, R. L. (2009). A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)‐positive myeloproliferative neoplasms. Nature Genetics, 41(4), 455–459. doi: 10.1038/ng.342.
  Kim, E., Kim, M., Woo, D. H., Shin, Y., Shin, J., Chang, N., … Lee, J. (2013). Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem‐like cells. Cancer Cell, 23(6), 839–852. doi: 10.1016/j.ccr.2013.04.008.
  Kim, K. H., & Roberts, C. W. (2016). Targeting EZH2 in cancer. Nature Medicine, 22(2), 128–134. doi: 10.1038/nm.4036.
  Kirito, K., Osawa, M., Morita, H., Shimizu, R., Yamamoto, M., Oda, A., … Komatsu, N. (2002). A functional role of Stat3 in in vivo megakaryopoiesis. Blood, 99(9), 3220–3227. doi: 10.1182/blood.V99.9.3220.
  Klampfl, T., Gisslinger, H., Harutyunyan, A. S., Nivarthi, H., Rumi, E., Milosevic, J. D., … Kralovics, R. (2013). Somatic mutations of calreticulin in myeloproliferative neoplasms. The New England Journal of Medicine, 369(25), 2379–2390. doi: 10.1056/NEJMoa1311347.
  Koppikar, P., Abdel‐Wahab, O., Hedvat, C., Marubayashi, S., Patel, J., Goel, A., … Levine, R. L. (2010). Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L‐induced thrombocytosis and myelofibrosis. Blood, 115(14), 2919–2927. doi: 10.1182/blood‐2009‐04‐218842.
  Koppikar, P., Bhagwat, N., Kilpivaara, O., Manshouri, T., Adli, M., Hricik, T., … Levine, R. L. (2012). Heterodimeric JAK‐STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature, 489(7414), 155–159. doi: 10.1038/nature11303.
  Kralovics, R., Guan, Y., & Prchal, J. T. (2002). Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Experimental Hematology, 30(3), 229–236. doi: 10.1016/S0301‐472X(01)00789‐5.
  Kralovics, R., Passamonti, F., Buser, A. S., Teo, S. S., Tiedt, R., Passweg, J. R., … Skoda, R. C. (2005). A gain‐of‐function mutation of JAK2 in myeloproliferative disorders. The New England Journal of Medicine, 352(17), 1779–1790. doi: 10.1056/NEJMoa051113.
  Kubovcakova, L., Lundberg, P., Grisouard, J., Hao‐Shen, H., Romanet, V., Andraos, R., … Skoda, R. C. (2013). Differential effects of hydroxyurea and INC424 on mutant allele burden and myeloproliferative phenotype in a JAK2‐V617F polycythemia vera mouse model. Blood, 121(7), 1188–1199. doi: 10.1182/blood‐2012‐03‐415646.
  Lacout, C., Pisani, D. F., Tulliez, M., Gachelin, F. M., Vainchenker, W., & Villeval, J. L. (2006). JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood, 108(5), 1652–1660. doi: 10.1182/blood‐2006‐02‐002030.
  Larsen, T. S., Christensen, J. H., Hasselbalch, H. C., & Pallisgaard, N. (2007). The JAK2 V617F mutation involves B‐ and T‐lymphocyte lineages in a subgroup of patients with Philadelphia‐chromosome negative chronic myeloproliferative disorders. British Journal of Haematology, 136(5), 745–751. doi: 10.1111/j.1365‐2141.2007.06497.x.
  Levine, R. L., Belisle, C., Wadleigh, M., Zahrieh, D., Lee, S., Chagnon, P., … Busque, L. (2006). X‐inactivation‐based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F‐negative ET and MMM patients with clonal hematopoiesis. Blood, 107(10), 4139–4141. doi: 10.1182/blood‐2005‐09‐3900.
  Levine, R. L., Wadleigh, M., Cools, J., Ebert, B. L., Wernig, G., Huntly, B. J., … Gilliland, D. G. (2005). Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell, 7(4), 387–397. doi: 10.1016/j.ccr.2005.03.023.
  Li, Z., Cai, X., Cai, C. L., Wang, J., Zhang, W., Petersen, B. E., … Xu, M. (2011a). Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood, 118(17), 4509–4518. doi: 10.1182/blood‐2010‐12‐325241.
  Li, J., Kent, D. G., Chen, E., & Green, A. R. (2011b). Mouse models of myeloproliferative neoplasms: JAK of all grades. Disease Models & Mechanisms, 4(3), 311–317. doi: 10.1242/dmm.006817.
  Li, J., Kent, D. G., Godfrey, A. L., Manning, H., Nangalia, J., Aziz, A., … Green, A. R. (2014). JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood, 123(20), 3139–3151. doi: 10.1182/blood‐2013‐06‐510222.
  Li, J., Spensberger, D., Ahn, J. S., Anand, S., Beer, P. A., Ghevaert, C., … Green, A. R. (2010). JAK2 V617F impairs hematopoietic stem cell function in a conditional knock‐in mouse model of JAK2 V617F‐positive essential thrombocythemia. Blood, 116(9), 1528–1538. doi: 10.1182/blood‐2009‐12‐259747.
  Lu, X., Huang, L. J., & Lodish, H. F. (2008). Dimerization by a cytokine receptor is necessary for constitutive activation of JAK2V617F. The Journal of Biological Chemistry, 283(9), 5258–5266. doi: 10.1074/jbc.M707125200.
  Lundberg, P., Karow, A., Nienhold, R., Looser, R., Hao‐Shen, H., Nissen, I., … Skoda, R. C. (2014). Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood, 123(14), 2220–2228. doi: 10.1182/blood‐2013‐11‐537167.
  Mantel, C., Messina‐Graham, S., Moh, A., Cooper, S., Hangoc, G., Fu, X. Y., & Broxmeyer, H. E. (2012). Mouse hematopoietic cell‐targeted STAT3 deletion: Stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging‐like phenotype. Blood, 120(13), 2589–2599. doi: 10.1182/blood‐2012‐01‐404004.
  Marty, C., Cuingnet, M., Hasan, S., Solary, E., Vainchenker, W., & Villeval, J. L. (2011). JAK2V617F promotes stem cell amplification driving MPN clonal dominance in mice and treatment by IFNa prevents this effect [abstract]. Blood (ASH Annual Meeting Abstracts), 118, 616.
  Marty, C., Lacout, C., Martin, A., Hasan, S., Jacquot, S., Birling, M. C., … Villeval, J. L. (2010). Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock‐in mice. Blood, 116(5), 783–787. doi: 10.1182/blood‐2009‐12‐257063.
  Marty, C., Pecquet, C., Nivarthi, H., El‐Khoury, M., Chachoua, I., Tulliez, M., … Vainchenker, W. (2016). Calreticulin mutants in mice induce an MPL‐dependent thrombocytosis with frequent progression to myelofibrosis. Blood, 127(10), 1317–1324. doi: 10.1182/blood‐2015‐11‐679571.
  Marubayashi, S., Koppikar, P., Taldone, T., Abdel‐Wahab, O., West, N., Bhagwat, N., … Levine, R. L. (2010). HSP90 is a therapeutic target in JAK2‐dependent myeloproliferative neoplasms in mice and humans. The Journal of Clinical Investigation, 120(10), 3578–3593. doi: 10.1172/JCI42442.
  Meyer, S. C., Keller, M. D., Chiu, S., Koppikar, P., Guryanova, O. A., Rapaport, F., … Levine, R. L. (2015). CHZ868, a type II JAK2 inhibitor, reverses type I JAK inhibitor persistence and demonstrates efficacy in myeloproliferative neoplasms. Cancer Cell, 28(1), 15–28. doi: 10.1016/j.ccell.2015.06.006.
  Mochizuki‐Kashio, M., Mishima, Y., Miyagi, S., Negishi, M., Saraya, A., Konuma, T., … Iwama, A. (2011). Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. Blood, 118(25), 6553–6561. doi: 10.1182/blood‐2011‐03‐340554.
  Morgan, K. J., & Gilliland, D. G. (2008). A role for JAK2 mutations in myeloproliferative diseases. Annual Review of Medicine, 59, 213–222. doi: 10.1146/annurev.med.59.061506.154159.
  Mullally, A., Bruedigam, C., Poveromo, L., Heidel, F. H., Purdon, A., Vu, T., … Lane, S. W. (2013). Depletion of Jak2V617F myeloproliferative neoplasm‐propagating stem cells by interferon‐alpha in a murine model of polycythemia vera. Blood, 121(18), 3692–3702. doi: 10.1182/blood‐2012‐05‐432989.
  Mullally, A., Lane, S. W., Ball, B., Megerdichian, C., Okabe, R., Al‐Shahrour, F., … Ebert, B. L. (2010). Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell, 17(6), 584–596. doi: 10.1016/j.ccr.2010.05.015.
  Mullally, A., Lane, S. W., Brumme, K., & Ebert, B. L. (2012). Myeloproliferative neoplasm animal models. Hematology/Oncology Clinics of North America, 26(5), 1065–1081. doi: 10.1016/j.hoc.2012.07.007.
  Nakajima, H., & Kunimoto, H. (2014). TET2 as an epigenetic master regulator for normal and malignant hematopoiesis. Cancer Science, 105(9), 1093–1099. doi: 10.1111/cas.12484.
  Nakaya, Y., Shide, K., Naito, H., Niwa, T., Horio, T., Miyake, J., & Shimoda, K. (2014). Effect of NS‐018, a selective JAK2V617F inhibitor, in a murine model of myelofibrosis. Blood Cancer Journal, 4, e174. doi: 10.1038/bcj.2013.73.
  Nangalia, J., Massie, C. E., Baxter, E. J., Nice, F. L., Gundem, G., Wedge, D. C., … Green, A. R. (2013). Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. The New England Journal of Medicine, 369(25), 2391–2405. doi: 10.1056/NEJMoa1312542.
  Ng, A. P., Kauppi, M., Metcalf, D., Hyland, C. D., Josefsson, E. C., Lebois, M., … Alexander, W. S. (2014). Mpl expression on megakaryocytes and platelets is dispensable for thrombopoiesis but essential to prevent myeloproliferation. Proceedings of the National Academy of Sciences U.S.A., 111(16), 5884–5889. doi:10.1073/pnas.1404354111.
  Oguro, H., Yuan, J., Tanaka, S., Miyagi, S., Mochizuki‐Kashio, M., Ichikawa, H., … Iwama, A. (2012). Lethal myelofibrosis induced by Bmi1‐deficient hematopoietic cells unveils a tumor suppressor function of the polycomb group genes. The Journal of Experimental Medicine, 209(3), 445–454. doi: 10.1084/jem.20111709.
  Olcaydu, D., Harutyunyan, A., Jager, R., Berg, T., Gisslinger, B., Pabinger, I., … Kralovics, R. (2009). A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nature Genetics, 41(4), 450–454. doi: 10.1038/ng.341.
  Ortmann, C. A., Kent, D. G., Nangalia, J., Silber, Y., Wedge, D. C., Grinfeld, J., … Green, A. R. (2015). Effect of mutation order on myeloproliferative neoplasms. The New England Journal of Medicine, 372(7), 601–612. doi: 10.1056/NEJMoa1412098.
  Park, S. O., Wamsley, H. L., Bae, K., Hu, Z., Li, X., Choe, S. W., … Sayeski, P. P. (2013). Conditional deletion of Jak2 reveals an essential role in hematopoiesis throughout mouse ontogeny: Implications for Jak2 inhibition in humans. PLoS One, 8(3), e59675. doi: 10.1371/journal.pone.0059675.
  Passamonti, F., & Rumi, E. (2009). Clinical relevance of JAK2 (V617F) mutant allele burden. Haematologica, 94(1), 7–10. doi: 10.3324/haematol.2008.001271.
  Passamonti, F., Rumi, E., Pietra, D., Elena, C., Boveri, E., Arcaini, L., … Cazzola, M. (2010). A prospective study of 338 patients with polycythemia vera: The impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia, 24(9), 1574–1579. doi: 10.1038/leu.2010.148.
  Pikman, Y., Lee, B. H., Mercher, T., McDowell, E., Ebert, B. L., Gozo, M., … Levine, R. L. (2006). MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med, 3(7), e270. doi:10.1371/journal.pmed.0030270.
  Prchal, J. T., Guan, Y. L., Prchal, J. F., & Barany, F. (1993). Transcriptional analysis of the active X‐chromosome in normal and clonal hematopoiesis. Blood, 81(1), 269–271.
  Qing, Y., & Stark, G. R. (2004). Alternative activation of STAT1 and STAT3 in response to interferon‐gamma. The Journal of Biological Chemistry, 279(40), 41679–41685. doi: 10.1074/jbc.M406413200.
  Quintas‐Cardama, A., Kantarjian, H., Manshouri, T., Luthra, R., Estrov, Z., Pierce, S., … Verstovsek, S. (2009). Pegylated interferon alfa‐2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. Journal of Clinical Oncology, 27(32), 5418–5424. doi: 10.1200/JCO.2009.23.6075.
  Quintas‐Cardama, A., Vaddi, K., Liu, P., Manshouri, T., Li, J., Scherle, P. A., … Verstovsek, S. (2010). Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: Therapeutic implications for the treatment of myeloproliferative neoplasms. Blood, 115(15), 3109–3117. doi: 10.1182/blood‐2009‐04‐214957.
  Sangkhae, V., Etheridge, S. L., Kaushansky, K., & Hitchcock, I. S. (2014). The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F‐induced myeloproliferative neoplasm. Blood, 124, 3956‐3963.
  Sashida, G., Wang, C., Tomioka, T., Oshima, M., Aoyama, K., Kanai, A., … Iwama, A. (2016). The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor‐initiating cells to bromodomain inhibition. The Journal of Experimental Medicine, 213(8), 1459–1477. doi: 10.1084/jem.20151121.
  Schaub, F. X., Looser, R., Li, S., Hao‐Shen, H., Lehmann, T., Tichelli, A., & Skoda, R. C. (2010). Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood, 115(10), 2003–2007. doi: 10.1182/blood‐2009‐09‐245381.
  Scott, L. M., Scott, M. A., Campbell, P. J., & Green, A. R. (2006). Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood, 108(7), 2435–2437. doi: 10.1182/blood‐2006‐04‐018259.
  Shide, K., Kameda, T., Yamaji, T., Sekine, M., Inada, N., Kamiunten, A., … Shimoda, K. (2016). Calreticulin mutant mice develop essential thrombocythemia that is ameliorated by the JAK inhibitor ruxolitinib. Leukemia. doi: 10.1038/leu.2016.308
  Shide, K., Shimoda, H. K., Kumano, T., Karube, K., Kameda, T., Takenaka, K., … Shimoda, K. (2008). Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia, 22(1), 87–95. doi: 10.1038/sj.leu.2405043.
  Shih, A. H., Abdel‐Wahab, O., Patel, J. P., & Levine, R. L. (2012). The role of mutations in epigenetic regulators in myeloid malignancies. Nature Reviews Cancer, 12(9), 599–612. doi: 10.1038/nrc3343.
  Shimizu, T., Kubovcakova, L., Nienhold, R., Zmajkovic, J., Meyer, S. C., Hao‐Shen, H., … Skoda, R. C. (2016). Loss of Ezh2 synergizes with JAK2‐V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis. The Journal of Experimental Medicine, 213(8), 1479–1496. doi: 10.1084/jem.20151136.
  Silver, R. T., Vandris, K., Wang, Y. L., Adriano, F., Jones, A. V., Christos, P. J., & Cross, N. C. (2011). JAK2(V617F) allele burden in polycythemia vera correlates with grade of myelofibrosis, but is not substantially affected by therapy. Leukemia Research, 35(2), 177–182. doi: 10.1016/j.leukres.2010.06.017.
  Skoda, R. C. (2010). JAK2 impairs stem cell function? Blood, 116(9), 1392–1393. doi: 10.1182/blood‐2010‐06‐287318.
  Spivak, J. L., Barosi, G., Tognoni, G., Barbui, T., Finazzi, G., Marchioli, R., & Marchetti, M. (2003). Chronic myeloproliferative disorders. Hematology/the Education Program of the American Society of Hematology. American Society of Hematology. Education Program, 200–224.
  Stein, B. L., Williams, D. M., Rogers, O., Isaacs, M. A., Spivak, J. L., & Moliterno, A. R. (2011). Disease burden at the progenitor level is a feature of primary myelofibrosis: A multivariable analysis of 164 JAK2 V617F‐positive myeloproliferative neoplasm patients. Experimental Hematology, 39(1), 95–101. doi: 10.1016/j.exphem.2010.09.008.
  Tannous, A., Pisoni, G. B., Hebert, D. N., & Molinari, M. (2015). N‐linked sugar‐regulated protein folding and quality control in the ER. Seminars in Cell & Developmental Biology, 41, 79–89. doi: 10.1016/j.semcdb.2014.12.001.
  Tapper, W., Jones, A. V., Kralovics, R., Harutyunyan, A. S., Zoi, K., Leung, W., … Cross, N. C. (2015). Genetic variation at MECOM, TERT, JAK2 and HBS1L‐MYB predisposes to myeloproliferative neoplasms. Nature Communications, 6, 6691. doi: 10.1038/ncomms7691.
  Tefferi, A., Wassie, E. A., Guglielmelli, P., Gangat, N., Belachew, A. A., Lasho, T. L., … Passamonti, F. (2014). Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: A collaborative study of 1027 patients. American Journal of Hematology, 89(8), E121–124. doi: 10.1002/ajh.23743.
  Teofili, L., Giona, F., Martini, M., Cenci, T., Guidi, F., Torti, L., … Larocca, L. M. (2007). Markers of myeloproliferative diseases in childhood polycythemia vera and essential thrombocythemia. Journal of Clinical Oncology, 25(9), 1048–1053. doi: 10.1200/JCO.2006.08.6884.
  Teofili, L., Giona, F., Torti, L., Cenci, T., Ricerca, B. M., Rumi, C., … Larocca, L. M. (2010). Hereditary thrombocytosis caused by MPLSer505Asn is associated with a high thrombotic risk, splenomegaly and progression to bone marrow fibrosis. Haematologica, 95(1), 65–70. doi: 10.3324/haematol.2009.007542.
  Tiedt, R., Hao‐Shen, H., Sobas, M. A., Looser, R., Dirnhofer, S., Schwaller, J., & Skoda, R. C. (2008). Ratio of mutant JAK2‐V617F to wild‐type Jak2 determines the MPD phenotypes in transgenic mice. Blood, 111(8), 3931–3940. doi: 10.1182/blood‐2007‐08‐107748.
  Tyner, J. W., Bumm, T. G., Deininger, J., Wood, L., Aichberger, K. J., Loriaux, M. M., … Deininger, M. W. (2010). CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood, 115(25), 5232–5240. doi: 10.1182/blood‐2009‐05‐223727.
  Vainchenker, W., Delhommeau, F., Constantinescu, S. N., & Bernard, O. A. (2011). New mutations and pathogenesis of myeloproliferative neoplasms. Blood, 118(7), 1723–1735. doi: 10.1182/blood‐2011‐02‐292102.
  Vannucchi, A. M., Antonioli, E., Guglielmelli, P., Longo, G., Pancrazzi, A., Ponziani, V., … Consortium, M. P. D. R. (2007). Prospective identification of high‐risk polycythemia vera patients based on JAK2(V617F) allele burden. Leukemia, 21(9), 1952–1959. doi: 10.1038/sj.leu.2404854.
  Villeval, J. L., Cohen‐Solal, K., Tulliez, M., Giraudier, S., Guichard, J., Burstein, S. A., … Wendling, F. (1997). High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood, 90(11), 4369–4383.
  Volkel, P., Dupret, B., Le Bourhis, X., & Angrand, P. O. (2015). Diverse involvement of EZH2 in cancer epigenetics. American Journal of Translational Research, 7(2), 175–193.
  Waibel, M., Solomon, V. S., Knight, D. A., Ralli, R. A., Kim, S. K., Banks, K. M., … Johnstone, R. W. (2013). Combined targeting of JAK2 and Bcl‐2/Bcl‐xL to cure mutant JAK2‐driven malignancies and overcome acquired resistance to JAK2 inhibitors. Cell Reports, 5(4), 1047–1059. doi: 10.1016/j.celrep.2013.10.038.
  Walz, C., Ahmed, W., Lazarides, K., Betancur, M., Patel, N., Hennighausen, L., … Van Etten, R. A. (2012). Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR‐ABL1 and JAK2(V617F) in mice. Blood, 119(15), 3550–3560. doi: 10.1182/blood‐2011‐12‐397554.
  Wen, Q. J., Yang, Q., Goldenson, B., Malinge, S., Lasho, T., Schneider, R. K., … Crispino, J. D. (2015). Targeting megakaryocytic‐induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nature Medicine, 21(12), 1473–1480. doi: 10.1038/nm.3995.
  Wernig, G., Kharas, M. G., Mullally, A., Leeman, D. S., Okabe, R., George, T., … Gilliland, D. G. (2012). EXEL‐8232, a small‐molecule JAK2 inhibitor, effectively treats thrombocytosis and extramedullary hematopoiesis in a murine model of myeloproliferative neoplasm induced by MPLW515L. Leukemia, 26(4), 720–727. doi: 10.1038/leu.2011.261.
  Wernig, G., Mercher, T., Okabe, R., Levine, R. L., Lee, B. H., & Gilliland, D. G. (2006). Expression of Jak2V617F causes a polycythemia vera‐like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood, 107(11), 4274–4281. doi: 10.1182/blood‐2005‐12‐4824.
  Wernig, G., Kharas, M. G., Okabe, R., Moore, S. A., Leeman, D. S., Cullen, D. E., … Gilliland, D. G. (2008). Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F‐induced polycythemia vera. Cancer Cell, 13(4), 311–320. doi: 10.1016/j.ccr.2008.02.009.
  Xing, S., Wanting, T. H., Zhao, W., Ma, J., Wang, S., Xu, X., … Zhao, Z. J. (2008). Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood, 111(10), 5109–5117. doi: 10.1182/blood‐2007‐05‐091579.
  Xu, K., Wu, Z. J., Groner, A. C., He, H. H., Cai, C., Lis, R. T., … Brown, M. (2012). EZH2 oncogenic activity in castration‐resistant prostate cancer cells is Polycomb‐independent. Science, 338(6113), 1465–1469. doi: 10.1126/science.1227604.
  Yan, D., Hutchison, R. E., & Mohi, G. (2012). Critical requirement for Stat5 in a mouse model of polycythemia vera. Blood, 119(15), 3539–3549. doi:10.1182/blood‐2011‐03‐345215.
  Yan, D., Jobe, F., Hutchison, R. E., & Mohi, G. (2015). Deletion of Stat3 enhances myeloid cell expansion and increases the severity of myeloproliferative neoplasms in Jak2V617F knock‐in mice. Leukemia, 29(10), 2050–2061. doi: 10.1038/leu.2015.116.
  Yang, Y., Akada, H., Nath, D., Hutchison, R. E., & Mohi, G. (2016). Loss of Ezh2 cooperates with Jak2V617F in the development of myelofibrosis in a mouse model of myeloproliferative neoplasm. Blood, 127(26), 3410–3423. doi: 10.1182/blood‐2015‐11‐679431.
  Zaleskas, V. M., Krause, D. S., Lazarides, K., Patel, N., Hu, Y., Li, S., & Van Etten, R. A. (2006). Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS One, 1, e18. doi: 10.1371/journal.pone.0000018.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library