Development and Applications of Patient‐Derived Xenograft Models in Humanized Mice for Oncology and Immune‐Oncology Drug Discovery

Bhavna Verma1, Michael Ritchie1, Maria Mancini1

1 Champions Oncology, Inc., Baltimore, Maryland
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 14.41
DOI:  10.1002/cpph.26
Online Posting Date:  September, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

With the recent approval of four novel immune oncology agents for the treatment of various cancers, the emerging power of this drug class has been substantiated. However, the full potential of such agents is yet to be realized, with only a fraction of the patient population responding to these drugs. A more advanced pre‐clinical and translational research platform may increase our understanding of the mechanisms associated with immune‐mediated cancer cell death, thereby facilitating the design and development of more generally efficacious agents and drug regimens. Described in this report are the nuances, advantages, and limitations of such a research approach. © 2017 by John Wiley & Sons, Inc.

Keywords: humanized mice; patient‐derived xenografts; PDX; immune oncology; oncology; pharmacology

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Development of Human Immune System Models
  • HIS PDX Study Considerations
  • Summary
  • Conflict of Interest
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

  Ali, N., Flutter, B., Sanchez, R., Sharif‐Paghaleh, E., Barber, L., Lombardi, G., & Nestle, F. (2012). Xenogeneic graft‐versus‐host‐disease in NOD‐scid IL‐2Rγnull mice display a T‐effector memory phenotype. PLoS One, 7(8), e44219. doi: 10.1371/journal.pone.0044219.
  Amabile, G., Welner, R., Nombela‐Arrieta, C., D'Alise, A., Di Ruscio, A., Ebralidze, A., … Silberstein, L. (2013). In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood, 121(8), 1255–1264. doi: 10.1182/blood‐2012‐06‐434407.
  Aryee, K.‐E., Brehm, M. A., Shultz, L. D., & Jurczyk, A. (2016). Modeling immune system‐tumor interactions using humanized mice. Journal of Immunology, 196(1 Supplement), 212.12.
  Aryee, K., Shultz, L., Greiner, D., Brehm, M., & Jurczyk, A. (2015). Development of humanized mouse models to study human immune system‐tumor interactions. Journal of Immunology, 194(1), 211.36.
  Brunda, M. J., Luistro, L., Rumennik, L., Wright, R. B., Dvorozniak, M., Aglione, A., … Palleroni, A. V. (1996). Antitumor activity of interleukin 12 in preclinical models. Cancer Chemotherapy and Pharmacology, 38(Supp 1), S16. doi: 10.1007/s002800051031.
  Burova, E., Hermann, A., Waite, J., Potocky, T., Lai, V., Hong, S., … Thurston, G. (2017). Characterization of the anti‐Pd‐1 antibody REGN2810 and its antitumor activity in human PD‐1 knock‐in mice. Molecular Cancer Therapeutics, 16(5):861‐870. doi: 10.1158/1535‐7163.MCT‐16‐0665.
  Chiou, V. L., & Burotoo, M. (2015). Pseudoprogression and immune‐related response in solid tumors. Journal of Clinical Oncology, 33(31), 3541–3543. doi: 10.1200/JCO.2015.61.6870
  Chuk, M. K., Chang, J. T., Theoret, M. R., Sampene, E., He, K., Weis, S. L., … Pazdur, R. (2017). FDA approval summary: Accelerated approval of pembrolizumab for second‐line treatment of metastatic melanoma. Clinical Cancer Research, doi: 10.1158/1078‐0432.CCR‐16‐0663.
  Corcoran, R. B., Atreya, C. E., Falchook, G. S., Kwak, E. L., Ryan, D. P., Bendell, J. C., … Kopetz, S. (2015). Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600‐mutant colorectal cancer. Journal of Clinical Oncology, 33(34), 4023–4031. doi: 10.1200/JCO.2015.63.2471.
  Davies, A., Hidalgo, M., Stebbing, J., Ciznadija, D., Katz, A., & Sidransky, D. (2016). Mouse clinical trials of pancreatic cancer: Integration of PDX models with genomics to improve patient outcomes to chemotherapeutics. Annals of Oncology, 27(suppl_6), 1522P. doi: 10.1093/annonc/mdw392.04.
  DeRose, Y. S., Gligorich, K. M., Wang, G., Georgelas, A., Bowman, P., Courdy, S. J., … Welm, B. E. (2013). Patient‐derived models of human breast cancer: Protocols for in vitro and in vivo applications in tumor biology and translational medicine. Current Protocols in Pharmacology, 60, 14.23.1–14.23.43. doi: 10.1002/0471141755.ph1423s60.
  Gao, H., Korn, J. M., Ferretti, S., Monahan, J. E., Wang, Y., Singh, M., … Sellers, W. R. (2015). High‐throughput screening using patient‐derived tumor xenografts to predict clinical trial drug response. Nature Medicine, 21(11), 1318–1325. doi: 10.1038/nm.3954.
  Garralda, E., Paz, K., López‐Casas, P. P., Jones, S., Katz, A., Kann, L. M., … Hidalgo, M. (2014). Integrated next‐generation sequencing and avatar mouse models for personalized cancer treatment. Clinical Cancer Research, 20(9), 2476–2484. doi: 10.1158/1078‐0432.CCR‐13‐3047.
  Hazarika, M., Chuk, M. K., Theoret, M. R., Mushti, S., He, K., Weis, S. L., … Pazdur, R. (2017). U.S. FDA approval summary: Nivolumab for treatment of unresectable or metastatic melanoma following progression on ipilimumab. Clinical Cancer Research, pii, 0712.2016. doi: 10.1158/1078‐0432.CCR‐16‐0712.
  Hiramatsu, H., Nishikomori, R., Heike, T., Ito, M., Kobayashi, K., Katamura, K., & Nakahata, T. (2003). Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/γcnull mice model. Blood, 102, 873–880. doi: https://doi.org/10.1182/blood‐2002‐09‐2755.
  Jangalwe, S., Shultz, L., Mathew, A., & Brehm, M. (2016). Improved B cell development in humanized NOD‐scid IL2Rγnull mice transgenically expressing human stem cell factor, granulocyte‐macrophage colony‐stimulating factor and interleukin‐3. Immunity, Inflammation and Disease, 4(4), 427–440.
  Kanda, Y., Kanda, J., Atsuta, Y., Maeda, Y., Ichinohe, T., Ohashi, K., … Morishima, Y. (2013). Impact of a single human leucocyte antigen (HLA) allele mismatch on the outcome of unrelated bone marrow transplantation over two time periods. A retrospective analysis of 3003 patients from the HLA Working Group of the Japan Society for Blood and Marrow Transplantation. British Journal of Haematology, 161(4), 566–577. doi: 10.1111/bjh.12279.
  Kim, M. P., Evans, D. B., Wang, H., Abbruzzese, J. L., Fleming, J. B., & Gallick, G. E. (2009). Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nature Protocols, 4, 1670–1680. doi: 10.1038/nprot.2009.171.
  Ledford, H. (2011). Melanoma drug wins US approval. Nature, 471(7340), 561. doi: 10.1038/471561a.
  Lepus, C. M., Gibson, T. F., Gerber, S. A., Kawikova, I., Szczepanik, M., Hossain, J., … Harding, M. J. (2009). Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD‐scid/γc−/−, Balb/c‐Rag1−/−γc−/−, and C.B‐17‐scid/bg immunodeficient mice. Human Immunology, 70(10), 790–802. doi: 10.1016/j.humimm.2009.06.005.
  Mestas, J., & Hughes, C. C. (2004). Of mice and not men: Differences between mouse and human immunology. Journal of Immunology, 172(5), 2731–2738. doi: 10.4049/jimmunol.172.5.2731.
  Ning, Y. M., Suzman, D., Maher, V. E., Zhang, L., Tang, S., Ricks, T., … Pazdur, R. (2017). FDA approval summary: Atezolizumab for the treatment of patients with progressive advanced urothelial carcinoma after platinum‐containing chemotherapy. Oncologist, pii, 2017–0087. doi: 10.1634/theoncologist.2017‐0087.
  Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, 12(4), 252–264. doi: 10.1038/nrc3239.
  Pearson, T., Greiner, D. L., & Shultz, L. D. (2008). Creation of “humanized” mice to study human immunity. Current Protocols in Immunology, 81, 15.21.1–15.21.21. doi: 10.1002/0471142735.im1521s81.
  Rangarajan, A., & Weinberg, R. A. (2003). Comparative biology of mouse versus human cells: Modelling human cancer in mice. Nature Reviews Cancer, 3(12), 952–959. doi: 10.1038/nrc1235
  Rosenberg, S. A., Spiess, P., & Lafreniere, R. (1986). A new approach to the adoptive immunotherapy of cancer with tumor‐infiltrating lymphocytes. Science, 233(4770), 1318–1321. doi: 10.1126/science.3489291.
  Shultz, L. D., Saito, Y., Najima, Y., Tanaka, S., Ochi, T., Tomizawa, M., … Ishikawa, F. (2010). Generation of functional human T‐cell subsets with HLA‐restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proceedings of the National Academy of Sciences of the United States of America, 107(29), 13022–13027. doi: 10.1073/pnas.1000475107.
  Stebbing, J., Paz, K., Schwartz, G. K., Wexler, L. H., Maki, R., Pollock, R. E., … Sidransky, D. (2014). Patient‐derived xenografts for individualized care in advanced sarcoma. Cancer, 120(13), 2006–2015. doi: 10.1002/cncr.28696.
  Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872. doi: 10.1016/j.cell.2007.11.019.
  Wesolowski, R., Markowitz, J., & Carson, W. E. 3rd (2013). Myeloid derived suppressor cells—a new therapeutic target in the treatment of cancer. Journal of Immunotherapy Cancer, 1, 10. doi: 10.1186/2051‐1426‐1‐10.
  Yao, L.‐C., Riess, J., Cheng, M., Wang, M., Banchereau, J., Shultz, L., … Keck, J. G. (2016). Patient‐derived tumor xenografts in humanized NSG‐SGM3 mice: A new immuno‐oncology platform. Journal of Clinical Oncology, 34, 4000–4010.
Internet Resources
  https://www.jax.org/jax‐mice‐and‐services/in‐vivo‐pharmacology/humanized‐mice/cd34
  CD34+ Humanized mice.
  http://www.taconic.com/taconic‐insights/precision‐research‐models/insights‐from‐the‐hunog‐production‐lab‐product‐integrity.html.
  Insights from the hunog production lab—product integrity by M. Seiler.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library