Analysis of Selenocysteine‐Containing Proteins

Vadim N. Gladyshev1, Dolph L. Hatfield2

1 University of Nebraska, Lincoln, 2 National Cancer Institute, Bethesda
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 3.8
DOI:  10.1002/0471140864.ps0308s20
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Representatives of three primary life domains‐‐bacteria, archaea, and eukaryotes‐‐possess specific selenium‐containing proteins. The majority of naturally occurring selenoproteins contain an amino acid, selenocysteine, that is incorporated into protein in response to the code word UGA. The presence of selenium in natural selenoproteins and in proteins in which this element is introduced by chemical or biological manipulations provides additional opportunities for characterizing structure, function, and mechanism of action. This unit provides an overview of known selenocysteine‐containing proteins, examples of targeted incorporation of selenium into proteins, and methods specific for selenoprotein identification and characterization.

PDF or HTML at Wiley Online Library

Table of Contents

  • Chemical Forms of Selenium in Proteins
  • Cotranslational Incorporation of Selenocysteine into Proteins
  • Selenocysteine‐containing Proteins
  • Specific Methods for Identifying and Characterizing Selenoproteins
  • Strategies for Identifying Selenocysteine‐encoding Genes and Selenocysteine‐ Containing Proteins
  • Conclusions
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Adachi, K., Saito, H., Tanaka, T., and Oka, T. 1998. Molecular cloning and characterization of the murine staf cDNA encoding a transcription activating factor for the selenocysteine tRNA gene in mouse mammary gland. J. Biol. Chem. 273:8598‐8606.
   Adachi, K., Saito, H., Tanaka, T., and Oka, T. 1999. Hormonal induction of mouse selenocysteine transfer ribonucleic acid (tRNA) gene transcription‐activating factor and its functional importance in the selenocysteine tRNA gene transcription in mouse mammary gland. Endocrinology 140:618‐623.
   Amberg, R., Mizutani, T., Wu, X.‐Q., and Gross, H.J. 1996. Selenocysteine synthesis in mammalia: An identity switch from tRNA(Ser) to tRNA(Sec). J. Mol. Biol. 263:8‐19.
   Andreesen, J.R., Wagner, M., Sonntag, D., Kohlstock, M., Harms, C., Gursinsky, T., Jager, J., Parther, T., Kabisch, U., Grantzdorffer, A., Pich, A., and Sohling, B. 1999. Various functions of selenols and thiols in anaerobic gram‐positive, amino acids‐utilizing bacteria. Biofactors 10:263‐270.
   Arner, E.S., Sarioglu, H., Lottspeich, F., Holmgren, A., and Bock, A. 1999. High‐level expression in Escherichia coli of selenocysteine‐containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial‐type SECIS elements and co‐expression with the selA, selB and selC genes J. Mol. Biol. 292:1003‐1016.
   Axley, M.J., Grahame, D.A., and Stadtman, T.C. 1990. Escherichia coli formate‐hydrogen lyase. Purification and properties of the selenium‐dependent formate dehydrogenase component. J. Biol. Chem. 265:18213‐18218.
   Benoit, S., Abaibou, H., and Mandrand‐Berthelot, M.A. 1998. Topological analysis of the aerobic membrane‐bound formate dehydrogenase of Escherichia coli. J. Bacteriol. 180:6625‐6634.
   Berg, B.L., Li, J., Heider, J., and Stewart, V. 1991. Nitrate‐inducible formate dehydrogenase in Escherichia coli K‐12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. J. Biol. Chem. 266:22380‐22385.
   Berry, M.J., Banu, L., and Larsen, P.R. 1991. Type I iodothyronine deiodinase is a selenocysteine‐containing enzyme. Nature 349:438‐440.
   Bertini, I., Ciurli, S., Dikiy, A., Luchinat, C. 1993. The electronic structure of the [4Fe‐4Se]3+ clusters in C. vinosum HiPIP and E. halophila HiPIP II through NMR and EPR studies. J. Am. Chem. Soc 115:12020‐12028.
   Blackburn, N.J., Ralle, M., Gomez, E., Hill, M.G., Pastuszyn, A., Sanders, D., Fee, J.A. 1999. Selenomethionine‐substituted Thermus thermophilus cytochrome ba3: Characterization of the CuA site by Se and Cu K‐EXAFS. Biochemistry 38:7075‐7084.
   Bock, A., Forchhammer, K., Heider, J., Leinfelder, W., Sawers, G., Veprek, B., and Zinoni, F. 1991. Selenocysteine: The 21st amino acid. Mol. Microbiol. 5:515‐20.
   Boles, J.O., Tolleson, W.H., Schmidt, J.C., Dunlap, R.B., and Odom, J.D. 1992. Selenomethionyl dihydrofolate reductase from Escherichia coli. Comparative biochemistry and 77Se nuclear magnetic resonance spectroscopy. J. Biol. Chem. 267:22217‐22223.
   Boschi‐Muller, S., Muller, S., Van Dorsselaer, A., Bock, A., and Branlant, G. 1998. Substituting selenocysteine for active site cysteine 149 of phosphorylating glyceraldehyde 3‐phosphate dehydrogenase reveals a peroxidase activity. FEBS Lett. 439:241‐245.
   Boyington, J.C., Gladyshev, V.N., Khangulov, S.V., Stadtman, T.C., and Sun, P.D. 1997. Crystal structure of formate dehydrogenase H: Catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275:1305‐1308.
   Buettner, C., Harney, J.W., and Larsen, P.R. 1998. The 3′‐untranslated region of human type 2 iodothyronine deiodinase mRNA contains a functional selenocysteine insertion sequence element. J. Biol. Chem. 273:33374‐33378.
   Buettner, C., Harney, J.W., and Berry, M.J. 1999. The Caenorhabditis elegans homologue of thioredoxin reductase contains a selenocysteine insertion sequence (SECIS) element that differs from mammalian SECIS elements but directs selenocysteine incorporation. J. Biol. Chem. 274:21598‐21602.
   Burk, R.F. and Hill, K.E. 1999. Orphan selenoproteins. Bioessays 21:231‐237.
   Chambers, I., Frampton, J., Goldfarb, P., Affara, N., McBain, W., and Harrison, P.R. 1986. The structure of the mouse glutathione peroxidase gene: The selenocysteine in the active site is encoded by the “termination” codon, TGA. EMBO J. 5:1221‐1227.
   Chan, S., Gerson, B., and Subramaniam, S. 1998a. The role of copper, molybdenum, selenium, and zinc in nutrition and health. Clin. Lab. Med. 18:673‐685.
   Chan, S., Gerson, B., Reitz, R.E., and Sadjadi, S.A. 1998b. Technical and clinical aspects of spectrometric analysis of trace elements in clinical samples. Clin. Lab. Med. 18:615‐629.
   Chittum, H.S., Hill, K.E., Carlson, B.A., Lee, B.J., Burk, R.F., and Hatfield, D.L. 1997. Replenishment of selenium deficient rats with selenium results in redistribution of the selenocysteine tRNA population in a tissue specific manner. Biochim. Biophys. Acta 1359:25‐34.
   Chittum, H.S., Lane, W.S., Carlson, B.A., Roller, P.P., Lung, F.T., Lee, B.J., and Hatfield, D.L. 1998. Rabbit β‐globin is extended beyond its UGA stop codon by multiple suppressions and translational reading gaps. Biochemistry 37:10866‐10870.
   Choi, I.S., Diamond, A.M., Crain, P.F., Kolker, J.D., McCloskey, J.A., and Hatfield, D.L. 1994. Reconstitution of the biosynthetic pathway of selenocysteine tRNAs in Xenopus oocytes. Biochemistry 33:601‐605.
   Chu, F.F., Doroshow, J.H., and Esworthy, R.S. 1993. Expression, characterization, and tissue distribution of a new cellular selenium‐dependent glutathione peroxidase, GSHPx‐GI. J. Biol. Chem. 268:2571‐2576.
   Clark, L.C., Combs, G.F. Jr., Turnbull, B.W., Slate, E.H., Chalker, D.K., Chow, J., Davis, L.S., Glover, R.A., Graham, G.F., Gross, E.G., Krongrad, A., Lesher, J.L. Jr., Park, H.K., Sanders, B.B. Jr., Smith, C.L., and Taylor, J.R. 1996. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. J. Am. Med. Assoc. 276:1957‐1963.
   Combs, G.F. and Combs, S.B. 1986. The Role of Selenium in Nutrition. Academic Press, New York.
   Commans, S. and Bock, A. 1999. Selenocysteine inserting tRNAs: An overview. FEMS Microbiol. Rev. 23:335.
   Conradson, S.D., Burgess, B.K., Newton, W.E., Di Cicco, A., Filipponi, A., Wu, Z.Y., Natoli, C.R., Hedman, B., and Hodgson, K.O. 1994. Selenol binds to iron in nitrogenase iron‐molybdenum cofactor: An extended x‐ray absorption fine structure study. Proc. Natl. Acad. Sci. U.S.A. 91:1290‐1293.
   Copeland, P.R. and Driscoll, D.M. 1998. Purification, redox sensitivity, and RNA binding properties of SECIS‐binding protein 2, a protein involved in selenoprotein biosynthesis. J. Biol. Chem. 274:25447‐25454.
   Copeland, P.R., Fletcher, J.E., Carlson, B.A., Hatfield, D.L., and Driscoll, D.M. 2000. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 19:306‐314.
   Croteau, W., Whittemore, S.L., Schneider, M.J., and St. Germain, D.L. 1995. Cloning and expression of a cDNA for a mammalian type III iodothyronine deiodinase. J. Biol. Chem. 270:16569‐16575.
   Daher, R. and Van Lente, F. 1994. Concanavalin A‐bound selenoprotein in human serum analyzed by graphite furnace atomic absorption spectrometry. Clin. Chem. 40:62‐70.
   Davey, J.C., Becker, K.B., Schneider, M.J., St. Germain, D.L., and Galton, V.A. 1995. Cloning of a cDNA for the type II iodothyronine deiodinase. J. Biol. Chem. 270:26786‐26789.
   Diamond, A.M., Choi, I.S., Crain, P.F., Hashizume, T., Pomerantz, S.C., Cruz, R., Steer, C.J., Hill, K.E., Burk, R.F., McCloskey, J.A., and Hatfield, D.L. 1993. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of selenocysteine tRNA[Ser]Sec. J. Biol. Chem. 268:14215‐14223.
   Dilworth, G.L. 1982. Properties of the selenium‐containing moiety of nicotinic acid hydroxylase from Clostridium barkeri. Arch. Biochem. Biophys. 219:30‐38.
   Dobbek, H., Gremer, L., Meyer, O., and Huber, R. 1999. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron‐sulfur flavoprotein containing S‐selanylcysteine. Proc. Natl. Acad. Sci. U.S.A. 96:8884‐8889.
   Eidsness, M.K., Scott, R.A., Prickril, B.C., DerVartanian, D.V., Legall, J., Moura, I., Moura, J.J., and Peck, H.D. Jr. 1989. Evidence for selenocysteine coordination to the active site nickel in the [NiFeSe]hydrogenases from Desulfovibrio baculatus. Proc. Natl. Acad. Sci. U.S.A. 86:147‐151.
   Flohe, L., Gunzler, W.A., and Schock, H.H. 1973. Glutathione peroxidase: A selenoenzyme. FEBS Lett. 32:132‐134.
   Forchhammer, K., Rucknagel, K.P., and Bock, A. 1990. Purification and biochemical characterization of SELB, a translation factor involved in selenoprotein synthesis. J. Biol. Chem. 265:9346‐9350.
   Franke, K.W. 1934a. A new toxicant occurring naturally in certain samples of plant foodstuffs. I. Results obtained in preliminary feeding trials. J. Nutr. 8:597‐608.
   Franke, K.W. 1934b. A new toxicant occurring naturally in certain samples of plant foodstuffs. II. The occurrence of the toxican in the protein fraction. J. Nutr. 8:609‐613.
   Fujiwara, K., Okamura‐Ikeda, K., Packer, L., and Motokawa, Y. 1997. Synthesis and characterization of selenolipoylated H‐protein of the glycine cleavage system. J. Biol. Chem. 272:19880‐19883.
   George, G.N., Colangelo, C.M., Dong, J., Scott, R.A., Khangulov, S.V., Gladyshev, V.N., and Stadtman, T.C. 1998. X‐ray absorption spectroscopy of the molybdenum site of Escherichia coli formate dehydrogenase. J. Am. Chem. Soc. 120:1267‐1273.
   Gesteland, R.F., Weiss, R.B., and Atkins, J.F. 1992. Recoding: Reprogrammed genetic decoding. Science 257:1640‐1641.
   Gettins, P. and Crews, B.C. 1991. 77Se NMR characterization of 77Se‐labeled ovine erythrocyte glutathione peroxidase. J. Biol. Chem. 266:4804‐4809.
   Gladyshev, V.N. and Hatfield, D.L. 1999. Selenocysteine‐containing proteins in mammals. J. Biomed. Sci. 6:151‐160.
   Gladyshev, V.N., Khangulov, S.V., and Stadtman, T.C. 1994a. Nicotinic acid hydroxylase from Clostridium barkeri: Electron paramagnetic resonance studies show that selenium is coordinated with molybdenum in the catalytically active selenium‐dependent enzyme. Proc. Natl. Acad. Sci. U.S.A. 91:232‐236.
   Gladyshev, V.N., Khangulov, S.V., Axley, M.J., and Stadtman, T.C. 1994b. Coordination of selenium to molybdenum in formate dehydrogenase H from Escherichia coli Proc. Natl. Acad. Sci. U.S.A. 91:7708‐7711.
   Gladyshev, V.N., Boyington, J.C., Khangulov, S.V., Grahame, D.A., Stadtman, T.C., and Sun, P.D. 1996a. Characterization of crystalline formate dehydrogenase H from Escherichia coli. Stabilization, EPR spectroscopy, and preliminary crystallographic analysis. J. Biol. Chem. 271:8095‐8100.
   Gladyshev, V.N., Khangulov, S.V., and Stadtman, T.C. 1996b. Properties of the selenium‐ and molybdenum‐containing nicotinic acid hydroxylase from Clostridium barkeri. Biochemistry 35:212‐223.
   Gladyshev, V.N., Jeang, K.‐T., and Stadtman, T.C. 1996c. Selenocysteine, identified as the penultimate C‐terminal residue in human T‐cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc. Natl. Acad. Sci. USA 93:6146‐6151.
   Gladyshev, V.N., Factor, V.M., Housseau, F., and Hatfield, D.L. 1998. Contrasting patterns of regulation of the antioxidant selenoproteins, thioredoxin reductase, and glutathione peroxidase, in cancer cells. Biochem. Biophys. Res. Commun. 251:488‐493.
   Gladyshev, V.N., Stadtman, T.C., Hatfield, D.L., and Jeang, K.T. 1999a. Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase Proc. Natl. Acad. Sci. U.S.A. 96:835‐839.
   Gladyshev, V.N., Krause, M., Xu, X.M., Korotkov, K.V., Kryukov, G.V., Sun, Q.A., Lee, B.J., Wootton, J.C., and Hatfield, D.L. 1999b. Selenocysteine‐containing thioredoxin reductase in C. elegans Biochem. Biophys. Res. Commun. 259:244‐249.
   Gladyshev, V.N., Martin‐Romero, F.J., Xu, X.‐M., Kumaraswamy, E., Carlson, B.A., Hatfield, D.L., and Lee, B.J. 2000. Molecular biology of selenium and its role in cancer, AIDS and other human diseases. Recent Develop. Biochem. In press.
   Glass, R.S., Singh, W.P., Jung, W., Veres, Z., Scholz, T.D., and Stadtman, T.C. 1993. Monoselenophosphate: Synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX. Biochemistry 32:12555‐12559.
   Grundner‐Culemann, E., Martin, G.W., III, Harney, J.W., and Berry, M.J. 1999. Two distinct SECIS structures capable of directing selenocysteine incorporation in eukaryotes. RNA 5:625‐635.
   Guimaraes, M.J., Peterson, D., Vicari, A., Cocks, B.G., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Ferrick, D.A., Kastelein, R.A., Bazan, J.F., and Zlotnik, A. 1996. Identification of a novel selD homolog from eukaryotes, bacteria, and archaea: Is there an autoregulatory mechanism in selenocysteine metabolism? Proc. Natl. Acad. Sci. U.S.A. 93:15086‐15091.
   Hatfield, D. and Diamond, A. 1993. UGA: A split personality in the universal genetic code. Trends Genet. 9:69‐70.
   Hatfield, D.L. and Portugal, F.H. 1970. Seryl‐tRNA in mammalian tissues: Chromatographic differences in brain and liver and a specific response to the codon, UGA. Proc. Natl. Acad. Sci. U.S.A. 67:1200‐1206.
   Hatfield, D., Lee, B.J., Hampton, L., and Diamond, A.M. 1991. Selenium induces changes in the selenocysteine tRNA[Ser]Sec population in mammalian cells. Nucl. Acids Res. 19:939‐943.
   Hatfield, D.L., Choi, I.S., Ohama, T., Jung, J.‐E., and Diamond, A.M. 1994. Selenocysteine tRNA[Ser]Sec isoacceptors as central components in selenoprotein biosynthesis in eukaryotes. In Selenium in Biology and Human Health (R.F. Burk, ed.) pp. 25‐44. Springer‐Verlag, New York.
   Hatfield, D.L., Gladyshev, V.N., Park, S.I., Chittum, H.S., Carlson, B.A., Moustafa, M., Park, J.M., Huh, J.R., Kim, M., and Lee, B.J. 1999. Biosynthesis of selenocysteine and its incorporation into proteins as the 21st amino acid. Comprehensive Natural Products Chemistry 4:353‐381.
   He, S.H., Teixeira, M., LeGall, J., Patil, D.S., Moura, I., Moura, J.J., DerVartanian, D.V., Huynh, B.H., and Peck, H.D. Jr. 1989. EPR studies with 77Se‐enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. Evidence for a selenium ligand to the active site nickel. J. Biol. Chem 264:2678‐2682.
   Heider, J. and Bock, A. 1992. Targeted insertion of selenocysteine into the alpha subunit of formate dehydrogenase from Methanobacterium formicicum. J. Bacteriol. 174:659‐663.
   Heider, J. and Bock, A. 1993. Selenium metabolism in micro‐organisms. Adv. Microb. Physiol. 35:71‐109.
   Hendrickson, W.A. 1991. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254:51‐58.
   Hendrickson, W.A., Horton, J.R., and LeMaster, D.M. 1990. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): A vehicle for direct determination of three‐dimensional structure. EMBO J. 9:1665‐1672.
   Jung, J.‐E., Karoor, V., Sandbacken, M.G., Lee, B.J., Ohama, T., Gesteland, R.F., Atkins, J.F., Mullenbach, G.T., Hill, K.E., Wahba, A.J., and Hatfield, D.L. 1994. Utilization of selenocysteyl‐tRNA[Ser]Sec and seryl‐tRNA[Ser]Sec in protein synthesis. J. Biol. Chem. 269:29739‐29745.
   Kabisch, U.C., Grantzdorffer, A., Schierhorn, A., Rucknagel, K.P., Andreesen, J.R., and Pich, A. 1999. Identification of D‐proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein. J. Biol. Chem. 274:8445‐8454.
   Khangulov, S.V., Gladyshev, V.N., Dismukes, G.C., and Stadtman, T.C. 1998. Selenium‐containing formate dehydrogenase H from Escherichia coli: A molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer. Biochemistry 37:3518‐3528.
   Kreimer, S. and Andreesen, J.R. 1995. Glycine reductase of Clostridium litorale. Cloning, sequencing, and molecular analysis of the grdAB operon that contains two in‐frame TGA codons for selenium incorporation. Eur. J. Biochem. 234:192‐199.
   Kryukov, G.V., Kryukov, V.M., and Gladyshev, V.N. 1999. New mammalian selenocysteine‐containing proteins identified with an algorithm that searches for selenocysteine insertion sequence elements. J. Biol. Chem. 274:33888‐33897.
   Kumaraswamy, E., Xu, X.‐M., Martin‐Romero, F.J., Carlson, B.A., and Hatfield, D.L. 1999. Role of UGA in mammalian protein synthesis: Selenocysteine, stop, suppression and reading gaps. Curr. Top. Biomed. Res. 1:113‐123.
   Lee, B.J., de la Pena, P., Tobian, J.A., Zasloff, M., and Hatfield, D. 1987. Unique pathway of expression of an opal suppressor phosphoserine tRNA. Proc. Natl. Acad. Sci. U.S.A. 84:6384‐6388.
   Lee, B.J., Worland, P.J., Davis, J.N., Stadtman, T.C., and Hatfield, D.L. 1989. Identification of a selenocysteyl‐tRNASer in mammalian cells that recognizes the nonsense codon, UGA. J. Biol. Chem. 264:9724‐9727.
   Lee, S.R., Kim, J.R., Kwon, K.S., Yoon, H.W., Levine, R.L., Ginsburg, A., and Rhee, S.G. 1999. Molecular cloning and characterization of a mitochondrial selenocysteine‐containing thioredoxin reductase from rat liver. J. Biol. Chem. 274:4722‐4734.
   Leinfelder, W., Stadtman, T.C., and Bock, A. 1989. Occurrence in vivo of selenocysteyl‐tRNA(SerUCA) in Escherichia coli. Effect of sel mutations. J. Biol. Chem. 264:9720‐9723.
   Low, S.C. and Berry, M.J. 1996. Knowing when not to stop: Selenocysteine incorporation in eukaryotes. Trends Biochem. Sci. 21:203‐208.
   Maenpaa, P.H. and Bernfield, M.R. 1970. A specific hepatic transfer RNA for phosphoserine. Proc. Natl. Acad. Sci. U.S.A. 67:688‐695.
   Martin, G.W., Harney, J.W., and Berry, M.J. 1996. Selenocysteine incorporation in eukaryotes: Insights into mechanism and efficiency from sequence, structure, and spacing proximity studies of the type 1 deiodinase SECIS element. RNA 2:171‐182.
   Martin, G.W. III, Harney, J.W., and Berry, M.J. 1998. Functionality of mutations at conserved nucleotides in eukaryotic SECIS elements is determined by the identity of a single nonconserved nucleotide. RNA 4:65‐73.
   Maser, R.L., Magenheimer, B.S., and Calvet, J.P. 1994. Mouse plasma glutathione peroxidase. cDNA sequence analysis and renal proximal tubular expression and secretion. J. Biol. Chem. 269:27066‐27073.
   Muller, S., Senn, H., Gsell, B., Vetter, W., Baron, C., and Bock, A. 1994. The formation of diselenide bridges in proteins by incorporation of selenocysteine residues: Biosynthesis and characterization of (Se)2‐thioredoxin. Biochemistry 33:3404‐3412.
   Myslinski, E., Krol, A., and Carbon, P. 1998. ZNF76 and ZNF143 are two human homologs of transcriptional activator Staf. J. Biol. Chem. 273:21998‐22006.
   Ohama, T., Yang, D., and Hatfield, D.L. 1994. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm. Arch. Biochem. Biophys. 315:293‐301.
   Pinset, J. 1954. The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli‐aerogenes group of bacteria. Biochem J. 57:10‐16.
   Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., and Hoekstra, W.G. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science 179:588‐590.
   Sawers, G. 1994. The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Van Leeuwenhoek 66:57‐88.
   Schaub, M., Myslinski, E., Krol, A., and Carbon, P. 1999. Maximization of selenocysteine tRNA and U6 small nuclear RNA transcriptional activation achieved by flexible utilization of a Staf zinc finger. J. Biol. Chem. 274:25042‐25050.
   Schuckelt, R., Brigelius‐Flohe, R., Maiorino, M., Roveri, A., Reumkens, J., Strassburger, W., Ursini, F., Wolf, B., and Flohe, L. 1991. Phospholipid hydroperoxide glutathione peroxidase is a selenoenzyme distinct from the classical glutathione peroxidase as evident from cDNA and amino acid sequencing. Free Radical Res. Commun. 14:343‐361.
   Schuster, C., Krol, A., and Carbon, P. 1998. Two distinct domains in Staf to selectively activate small nuclear RNA‐type and mRNA promoters. Mol. Cell. Biol. 18:2650‐2658.
   Schwarz, K. and Foltz, C.M. 1957. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc. 79:3292‐3293.
   Sorgenfrei, O., Duin, E.C., Klein, A., and Albracht, S.P. 1997. Changes in the electronic structure around Ni in oxidized and reduced selenium‐containing hydrogenases from Methanococcus voltae. Eur. J. Biochem. 247:681‐687.
   Stadtman, T.C. 1996. Selenocysteine. Annu. Rev. Biochem. 65:83‐100.
   Sturchler, C., Lescure, A., Keith, G., Carbon, P., and Krol, A. 1994. Base modification pattern at the wobble position of Xenopus selenocysteine tRNA(Sec). Nucl. Acids Res. 22:1354‐1358.
   Sun, Q.A., Wu, Y., Zappacosta, F., Jeang, K.T., Lee, B.J., Hatfield, D.L., and Gladyshev, V.N. 1999. Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J. Biol. Chem. 274:24522‐24530.
   Sunde, R.A. and Evenson, J.K. 1987. Serine incorporation into the selenocysteine moiety of glutathione peroxidase. J. Biol. Chem. 262:933‐937.
   Vendeland, S.C., Beilstein, M.A., Yeh, J.Y., Ream, W., and Whanger, P.D. 1995. Rat skeletal muscle selenoprotein W: cDNA clone and mRNA modulation by dietary selenium. Proc. Natl. Acad. Sci. U.S.A. 92:8749‐8753.
   Vorholt, J.A., Vaupel, M., and Thauer, R.K. 1997. A selenium‐dependent and a selenium‐independent formylmethanofuran dehydrogenase and their transcriptional regulation in the hyperthermophilic Methanopyrus kandleri. Mol. Microbiol. 23:1033‐1042.
   Walczak, R., Carbon, P., and Krol, A. 1998. An essential non‐Watson‐Crick base pair motif in 3′‐UTR to mediate selenoprotein translation. RNA 4:74‐84.
   Wen, W., Weiss, S.L., and Sunde, R.A. 1998. UGA codon position affects the efficiency of selenocysteine incorporation into glutathione peroxidase‐1. J. Biol. Chem. 273:28533‐28541.
   Wilting, R., Schorling, S., Persson, B.C., and Bock, A. 1997. Selenoprotein synthesis in archaea: Identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion. J. Mol. Biol. 266:637‐641.
   Wu, X.G. and Gross, H.J. 1993. The long extra arms of human tRNA((Ser)Sec) and tRNA(Ser) function as major identity elements for serylation in an orientation‐dependent, but not sequence‐specific manner. Nucl. Acids Res. 21:5589‐5594.
PDF or HTML at Wiley Online Library