Overview of Cell Fractionation

J. David Castle1

1 University of Virginia, Charlottesville, Virginia
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 4.1
DOI:  10.1002/0471140864.ps0401s37
Online Posting Date:  September, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This discussion unit describes the most common methods for cell fractionation which provides the essential ingredients for the increasing number of cell‐free assays now being used in test‐tube reconstructions of complex cellular events involving intercompartmental interactions. Gel filtration separates on the basis of size, centrifugation separates on the basis of size and density, and electrophoresis separates on the basis of surface charge density. Centrifugation is the most widely used procedure in cell fractionation and is the only approach commonly used to separate crude tissue homogenates (often having quite large volumes) into subfractions as starting material for more refined purification procedures. Therefore, this overview focuses primarily on fractionation of organelles by centrifugation.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Principles of Centrifugation
  • Instrumentation
  • Fractionation Media
  • Evaluation of Fractionation
  • Definitive Procedures
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Adelman, M.R., Blobel, G., and Sabatini, D.D. 1973. An improved cell fractionation procedure for the preparation of rat liver membrane‐bound ribosomes. J. Cell Biol. 56:191‐205.
   Beaumelle, B.D., Gibson, A., and Hopkins, C.R. 1990. Isolation and preliminary characterization of the major membrane boundaries of the endocytic pathway in lymphocytes. J. Cell Biol. 111:1811‐1823.
   Bell, A.W., Ward, M.A., Blackstock, W.P., Freeman, H.N., Choudhary, J.S., Lewis, A.P., Chotai, D., Fazel, A., Gushue, J.N., Paiement, J., Palcy, S., Chevet, E., Lafreniere‐Roula, M., Solari, R., Thomas, D.Y., Rowley, A., and Bergeron, J.J. 2001. Proteomics characterization of abundant Golgi membrane proteins. J. Biol. Chem. 276:5152‐5165.
   Bergeron, J.J.M., Rachubinski, R.A., Sikstrom, R.A., Posner, B.I., and Paiement, J. 1982. Galactose transfer to endogenous acceptors within Golgi fractions of rat liver. J. Cell Biol. 92:139‐146.
   Blobel, G. and Potter, V.R. 1966. Nuclei from rat liver: Isolation method that combines purity with high yield. Science 154:1662‐1665.
   Cameron, R.S. and Castle, J.D. 1984. Isolation and compositional analysis of secretion granules and their membrane subfraction from the rat parotid gland. J. Memb. Biol. 79:127‐144.
   Carlson, S.S., Wagner, J.A., and Kelly, R.B. 1978. Purification of synaptic vesicles from elasmobranch electric organ and the use of biophysical criteria to demonstrate their purity. Biochemistry 17:1188‐1199.
   Cronshaw, J.M., Krutchinsky, A.N., Zhang, W., Chait, B.T., and Matunis, M.J. 2002. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158:915‐927.
   Ford, T. Graham, J., and Rickwood, D. 1994. Iodixanol: A nonionic iso‐osmotic centrifugation medium for the formation of self‐generated gradients. Anal. Biochem. 220:360‐366.
   Hofmann, G. (ed.) 1977. ISCO Tables, 7th ed. ISCO, Lincoln, Neb.
   Hogeboom, G.H., Schneider, W.C., and Palade, G.E. 1948. Cytochemical studies of mammalian tissues. I. Isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particular material. J. Biol. Chem. 172:619‐635.
   Hubbard, A.L., Wall, D.A., and Ma, A.K. 1983. Isolation of rat hepatocyte plasma membranes: I. Presence of the three major domains. J. Cell Biol. 96:217‐229.
   Huttner, W.B., Schiebler, W., Greengard, P., and DeCamilli, P. 1983. Synapsin I (Protein I), a nerve terminal–specific phosphoprotein: III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96:1374‐1388.
   Leighton, F., Poole, B., Beaufay, H., Baudhuin, P., Coffey, J.W., Fowler, S., and DeDuve, C. 1968. The large‐scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with Triton WR‐1339. J. Cell Biol. 37:482‐513.
   Loh, Y.P., Tam, W.W.H., and Russell, J.T. 1984. Measurement of pH and membrane potential in secretory vesicles isolated from bovine pituitary intermediate lobe. J. Biol. Chem. 259:8238‐8245.
   Malathi, P., Preiser, H., Fairclough, P., Mallett, P., and Crane, R.K. 1979. A rapid method for the isolation of kidney brush border membranes. Biochim. Biophys. Acta 554:259‐263.
   Marsh, M., Schmid, S., Kern, H., Harms, E., Male, P., Mellman, I., and Helenius, A. 1987. Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis. J. Cell Biol. 104:875‐886.
   Rickwood, D. 1984. Centrifugation, A Practical Approach, 2nd ed. IRL Press, Oxford.
   Schnaitman, C. and Greenawalt, J.W. 1968. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J. Cell Biol. 38:158‐175.
   Walworth, N.C. and Novick, P.J. 1987. Purification and characterization of constitutive secretory vesicles from yeast. J. Cell Biol. 195:163‐174.
   Wasiak, S., Legendre‐Guillemin, V., Puertollano, R., Blondeau, F., Girard, M., de Heuvel, E., Boismenu, D., Bell, A.W., Bonifacino, J.S., and McPherson, P.S. 2002. Enthoprotin: A novel clathrin‐associated protein identified through subcellular proteomics. J. Cell Biol. 158:855‐862.
   Wattiaux, R., Wattiaux‐DeConnick, S., Ronveaux‐Dupal, M.‐F., and Dubois, F. 1978. Isolation of rat liver lysosomes by isopycnic centrifugation in a metrizamide gradient. J. Cell Biol. 78:349‐368.
   Wu, C.C., Taylor, R.S., Lane, D.R., Ladinsky, M.S., and Howell, K.E. 2000. GMx33: A novel family of trans‐Golgi proteins identified by proteomics. Traffic 1:963‐975.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library