Overview of Protein Expression by Mammalian Cells

David Gray1

1 Chiron Corporation, Emeryville, California
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 5.9
DOI:  10.1002/0471140864.ps0509s10
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit reviews the stages involved in protein production in mammalian cells using a stable‐expression approach. Choice of cell type is discussed, as is transfection of the host cells, methods for selection and amplification of transformants, and growth of cells at appropriate scale for protein production. Since post‐transcriptional modification and intracellular protein transportation are important features of recombinant‐protein production in mammalian cells, some description of these mechanisms is included.

PDF or HTML at Wiley Online Library

Table of Contents

  • Choice of Mammalian Cell Host
  • Transfection, Selection, and Amplification
  • Protein Translation, Quality Control, and Covalent Modification
  • Growth of Mammalian Cells for Protein Expression
  • Scale of Operation
  • Summary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Aitken, A. 1996. Protein chemistry methods, post‐translational modification, consensus sequences. In Protein LabFax (N.C. Price, ed.) pp. 253‐285. BIOS Scientific Publishers, Oxford.
   Albin, C. and Robinson, W.S. 1980. Protein kinase activity in hepatitis B virus. J. Virol. 34:297‐302.
   Allen, S., Naim, H.Y., and Bullied, N.J. 1995. Intracellular folding of tissue‐type plasminogen‐activator‐effects of disulfide bond formation on N‐linked glycosylation and secretion. J. Biol. Chem. 270:4797‐4804.
   Andersen, D.C., Goochee, C.F., Cooper, G., and Weitzhandler, M. 1994. Monosaccharide and oligosaccharide analysis of isoelectric focusing–separated and blotted g‐CSF glycoforms using high pH anion exchange chromatography with pulsed amperometric detection. Glycobiology 4:459‐467.
   Aoki, D., Lee, N., Yamaguchi, N., Dubois, C., and Fukuda, M.N. 1992. Golgi retention of a trans‐Golgi membrane protein, galactosyl‐transferase, requires cysteine and histidine residues within the membrane‐anchoring domain. Proc. Natl. Acad. Sci. U.S.A. 89:4319‐4323.
   Aruffo, A. 1997. Transient expression of proteins using COS cells. In Current Protocols in Molecular Biology (F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, eds.) pp. 16.13.1‐16.13.7. John Wiley & Sons, New York.
   Baeuerle, P.A. and Huttner, W.B. 1987. Tyrosine sulfation is a trans‐Golgi‐specific protein modification. J. Cell. Biol. 105:2655‐2664.
   Barrett, A.J. 1981. α2‐macroglobulin. Methods Enzymol. 80:737‐754.
   Baumann, O., Walz, B., Somlyo, A.V., and Somlyo, A.P. 1991. Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors. Proc. Natl. Acad. Sci. U.S.A. 88:741‐744.
   Bebbington, C.R. and Hentschel, G.C.G. 1987. The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells. In DNA Cloning, Vol. 3 (D.M. Glover, ed.) pp. 163‐168. IRL Press, Oxford.
   Bebbington, C.R., Renner, G., Thomson, S., King, D., Abrams, D., and Yarranton, G.T. 1992. High level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Bio/Technology 10:169‐175.
   Bergeron, J.J.M., Brenner, M.B., Thomas, D.Y., and Williams, D.B. 1994. Calnexin: A membrane‐bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19:124‐128.
   Bettger, W.J. and McKeehan, W.L. 1986. Mechanisms of cellular nutrition. Physiol. Rev. 66:1‐35.
   Bock, G., Todd, P., and Kompala, D.S. 1993. Foreign gene expression (β‐galactosidase) during the cell cycle phases in recombinant CHO cells. Biotechnol. Bioeng. 42:1113‐1123.
   Boshart, M., Weber, F., Gerhard, J., Dorsch‐Hasler, K., Fleckenstein, B., and Schaffner, W. 1985. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521‐530.
   Burke, R.L., Pachl, C., Quiroga, M., Rosenberg, S., Haigwood, N., Nordfang, O., and Ezban, M. 1986. The functional domains of coagulation factor VIII:C. J. Biol. Chem. 261:12574‐12578.
   Butler, M. and Spier, R.E. 1984. The effects of glutamine utilization and ammonia production on the growth of BHK cells in microcarrier cultures. J. Biotechnol. 1:187‐196.
   Cartier, M. and Stanners, C.P. 1990. Stable high‐level expression of a carcinoembryonic antigen–encoding cDNA after transfection and amplification with a dominant and selectable asparagine synthetase marker. Gene 95:223‐230.
   Chiang, T. and McConlogue, L. 1988. Amplification and expression of heterologous ornithine carboxylase in Chinese hamster ovary cells. Mol. Cell. Biol. 8:764‐769.
   Chotigeat, W., Watanapokasin, Y., Mahler, S., and Gray, P.P. 1994. Role of environmental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology 15:217‐221.
   Conradt, H.S., Hofer, B., and Hauser, H. 1990. Expression of human glycoproteins in recombinant mammalian cells: Towards genetic engineering of N‐ and O‐glycoproteins. Trends Glycos. Glycotech. 2:168‐181.
   Datti, A. and Dennis, J.W. 1993. Regulation of UDP‐GlcNAc:Galβ 1‐3 GalNacR β 1‐6‐N‐acetylglucosaminyltransferase (GlcNAC to GalNAc) in Chinese hamster ovary cells. J. Biol. Chem. 268:5409‐5416.
   de Saint Vincent, B.R., Delbruck, S., Eckhart, W., Meinkoth, J., Vitto, L., and Wahl, G. 1981. The cloning and reintroduction into animal cells of a functional CAD gene, a dominant amplifiable genetic marker. Cell 27:267‐277.
   Doms, R.W., Lamb, R.A., Rose, J.K., and Helinius, A. 1993. Folding and assembly of viral membranes. Virology 193:545‐562.
   Eagle, H. 1955. Nutritional needs of mammalian cells in tissue culture. Science 122:17‐20.
   Ellis, R.J. and Hemmingsen, S.M. 1989. Molecular chaperones: Proteins essential for the biogenesis of some macromolecular structures. Trends Biochem. Sci. 14:339‐342.
   Gawlitzek, M., Conradt, H.S., and Wagner, R. 1995. Effect of different cell culture conditions on the polypeptide integrity and N‐glycosylation of a recombinant glycoprotein. Biotechnol. Bioeng. 46:536‐544.
   Gebert, C.A. and Gray, P.P. 1995. Expression of FSH in CHO cells. 2. Stimulation of hFSH expression levels by defined medium supplements. Cytotechnology 17:13‐19.
   Gething, M.J. and Sambrook, J. 1992. Protein folding in the cell. Nature 335:33‐45.
   Goochee, C.F., Gramer, M.J., Andersen, D.C., Bahr, J.B., and Rasmussen, J.R. 1991. The oligosaccharides of glycoproteins: Bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Bio/Technology 9:1347‐1355.
   Gramer, M.J. and Goochee, C.F. 1993. Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotechnol. Prog. 9:366‐377.
   Gramer, M.J., Goochee, C.F., Chock, V.J., Brousseau, D.T., and Sliwkowski, M.B. 1995. Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase. Bio/Technology 13:692‐698.
   Gray, D.R., Chen, S., Howarth, W., Inlow, D., and Maiorella, B.L. 1996. CO2 in large‐scale and high‐density CHO perfusion culture. Cytotechnology 22:65‐78.
   Gu, M.B., Todd, P., and Kompala, D.S. 1993. Foreign gene expression (β‐galactosidase) during the cell cycle phases in recombinant CHO cells. Biotechnol. Bioeng. 42:1113‐1123.
   Gu, M.B., Todd, P., and Kompala, D.S. 1996. Cell cycle analysis of foreign gene (β‐galactosidase) expression in recombinant mouse cells under control of mouse mammary tumor virus promoter. Biotechnol. Bioeng. 50:229‐237.
   Han, K.K. and Martinage, A. 1992. Post‐translational chemical modification(s) of proteins. Int. J. Biochem. 24:19‐28.
   Hart, G.W., Holt, G.H., and Haltiwanger, R.S. 1988. Nuclear and cytosolic glycosylation. Trends Biochem. Sci. 13:380‐384.
   Hassel, T. and Butler, M. 1990. Adaptation to non‐ammoniagenic medium and selective substrate feeding lead to enhanced yields in animal cell cultures. J. Cell Sci. 96:501‐508.
   Hayter, P.M., Curling, E.M., Baines, A.J., Jenkins, N., Salmon, I., Strange, P.G., Tong, J.M., and Bull, A.T. 1992. Glucose‐limited chemostat culture of Chinese hamster ovary cells producing recombinant human interferon‐γ. Biotechnol. Bioeng. 39:327‐335.
   Hayter, P.M., Curling, M.A.E., Gould, M.L., Baines, A.J., Jenkins, N., Salmon, I., Strange, P.G., and Bull, A.T. 1993. The effect of dilution rate on CHO cell physiology and recombinant interferon‐gamma production in glucose limited chemostat culture. Biotechnol. Bioeng. 42:1077‐1085.
   Hendershot, L.M., Ting, J., and Lee, A.S. 1988. Identity of the immunoglobulin heavy‐chain‐binding protein with the 78000 dalton glucose‐regulated protein and the role of post translational modifications in its binding function. Mol. Cell. Biol. 8:4250‐4256.
   Hickman, S. and Kornfeld, S. 1978. Effect of tunicamycin on IgM, IgA, and IgG secretion by mouse plasmacytoma cells. J. Immunol. 121:990‐996.
   Hilton, D.J., Watowich, S.S., Murray, P.J., and Lodish, H.F. 1995. Increased cell surface expression and enhanced folding in the endoplasmic reticulum of a mutant erythropoietin receptor. Proc. Natl. Acad. Sci. U.S.A. 92:190‐194.
   Hirschberg, C.B. and Snider, M.D. 1987. Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Annu. Rev. Biochem. 56:63‐89.
   Hooker, A.D., Goldman, M.H., Markham, N.H., James, D.C., Ison, A.P., Bull, A.T., Strange, P.G., Salmon, I., Baines, A.J., and Jenkins, N. 1995. N‐glycans of recombinant human interferon‐gamma change during batch culture of Chinese hamster ovary cells. Biotechnol. Bioeng. 48:639‐648.
   Huovila, A‐P., Eder, A.M., and Fuller, S.D. 1992. Hepatitis B surface antigen assembles in a post‐ER, pre‐Golgi compartment. J. Cell Biol. 118:1305‐1320.
   Hurt, E.C., Peshold‐Hurt, B., and Schatz, G. 1984. The cleavable prepiece of an imported mitochondrial protein is sufficient to direct cytosolic dihydrofolate reductase into the mitochondrial matrix. FEBS Lett. 178:306‐310.
   Hurtley, S.M. and Helenius, A. 1989. Protein oligomerization in the endoplasmic reticulum. Annu. Rev. Cell Biol. 5:277‐307.
   Hwang, C., Sinskey, A.J., and Lodish, H.F. 1992. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496‐1502.
   Jackson, M.R., Nilsonn, T., and Peterson, P.A. 1990. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 9:3153‐3162.
   Jayme, D.W. 1991. Nutrient optimization for high density biological production operations. Cytotechnology 5:15‐30.
   Jenkins, N. 1990. Growth factors. In Mammalian Cell Biotechnology (M. Butler, ed.) pp. 39‐55. IRL Press, Oxford.
   Jenkins, N., Castro, P.M.L., Menon, S., Ison, A.P., and Bull, A.T. 1994. Effect of lipid supplements on the production and glycosylation of recombinant interferon‐γ expressed in CHO cells. Cytotechnology 15:209‐215.
   Jenkins, N., Parekh, R.B., and James, D.C. 1996. Getting the glycosylation right: Implications for the biotechnology industry. Nature Biotechnol. 14:975‐981.
   Kane, S.E., Reinhard, D.H., Fordis, C.M., Pastan, I., and Gottesman, M.M. 1989. A new vector using the human multidrug resistance gene as a selectable marker enables overexpression of foreign genes in eukaryotic cells. Gene 84:439‐446.
   Kaufman, R.J. 1990a. Use of recombinant DNA technology for engineering mammalian cells to produce proteins. In Large‐Scale Mammalian Cell Culture Technology (A.J. Lubiniecki, ed.) pp. 15‐69. Marcel Dekker, New York.
   Kaufman, R.J. 1990b. Selection and coamplification of heterologous genes in mammalian cells. Methods Enzymol. 185:537‐566.
   Kaufman, R.J. and Sharp, P.A. 1982. Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complimentary DNA gene. J. Mol. Biol. 159:601‐621.
   Kaufman, R.J., Wasley, L.C., Furie, B.C., Furie, B., and Schoemaker, C. 1986a. Expression, purification and characterization of recombinant γ‐carboxylated factor IX synthesized in Chinese hamster ovary cells. J. Biol. Chem. 261:9622‐9628.
   Kaufman, R.J., Murtha, P., Ingolia, D.E., Yeung, C.Y., and Kellems, E.R. 1986b. Selection and amplification of heterologous genes encoding adenosine deaminase in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 83:3136‐3140.
   Keenan, J. and Clynes, M. 1996. Replacement of transferrin by simple iron compounds for MDCK cells grown and subcultured in serum‐free medium. [Letter]. In Vitro Cell. Dev. Biol. Anim. 32:451‐453.
   Keller, G.‐A., Gould, S., Deluca, M., and Subramani, S. 1987. Firefly luciferase is targeted to peroxisomes in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 84:3264‐3268.
   Khan, M.W., Musgrave, S.C., and Jenkins, N. 1995. N‐linked glycosylation of tissue plasminogen activator in Namalwa cells. Biochem. Soc. Trans. 23:S99.
   Kingsley, D.M., Kozarsky, K.F., Hobbie, L., and Krieger, M. 1986. Reversible defects in O‐linked glycosylation and LDL‐receptor expression in UDP‐Gal/UDP‐GalNAc 4‐epimerase deficient mutant. Cell 44:749‐759.
   Kingston, R.E., Kaufman, R.J., Beddington, C.R., and Rolfe, M.R. 1993. Amplification using CHO cell expression vectors. In Current Protocols in Molecular Biology (F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, eds.) pp. 16.14.1‐16.14.13. John Wiley & Sons, New York.
   Klinman, D.M. and McKearn, T.J. 1981. Dialyzable serum components can support the growth of hybridoma cell lines in vitro. J. Immunol. Methods 42:1‐9.
   Kornfeld, R. and Kornfeld, S. 1985. Assembly of asparagine‐linked oligosaccharides. Annu. Rev. Biochem. 54:631‐664.
   Lee, E.U., Roth, J., and Paulson, J.C. 1989. Alteration of terminal glycosylation sequences on N‐linked oligosaccharides of Chinese hamster ovary cells by expression of β‐galactosidase α2,6‐sialyltransferase. J. Biol. Chem. 264:981‐1008.
   Leelavatcharamas, V., Emery, A.N., and Al‐Rubeai, M. 1994. Growth and interferon‐gamma production in batch culture of CHO cells. Cytotechnology 15:65‐71.
   Lifely, M.R., Hale, C., Boyce, S., Keen, M.J., Phillips, J. 1995. Glycosylation and biological activity of CAMPATH‐1H expressed in different cell lines and grown under different culture conditions. Glycobiology 5:813‐822.
   Lodish, H.F. and Kong, N. 1990. Perturbation of calcium blocks exit of secretory proteins from the rough endoplasmic reticulum. J. Biol. Chem. 265:10893‐10899.
   Machamer, C.E. and Rose, J.K. 1987. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J. Cell Biol. 105:1205‐1214.
   Malim, M.H., Boehnlein, S., Hauber, J., and Cullen, B.R. 1989. Functional dissection of the HIV‐1 Rev trans‐activator‐derivation of a trans‐dominant repressor of Rev function. Cell 33:153‐159.
   Mariani, B.D., Slate, D.L., and Schimke, R.T. 1981. S phase–specific synthesis of dihydrofolate reductase in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. U.S.A. 78:4985‐4989.
   Martinelle, K., Westlund, A., and Haggstrom, L. 1996. Ammonium ion transport—a cause of cell death. Cytotechnology 22:251‐254.
   Mayer, T., Tamura, T., Falk, M., and Niemann, H. 1988. Membrane integration and intracellular transport of coronavirus glycoprotein E1, a class III membrane glycoprotein. J. Biol. Chem. 263:14956‐14963.
   McIlhinney, R.A.J. 1990. The fats of life: The importance and function of protein acylation. Trends Biochem. Sci. 15:387‐391.
   McKnight, S. and Tijan, R. 1986. Transcriptional selectivity of viral genes in mammalian cells. Cell 46:795‐805.
   McQueen, A. and Bailey, J.E. 1990. Effect of ammonium ion and extracellular pH on hybridoma cell metabolism and antibody production. Biotechnol. Bioeng. 35:1067‐1077.
   Miyazawa, S., Osumi, T., Hashimoto, T., Ohyno, K., Miura, S., and Fujiki, Y. 1989. Peroxisome targetting signal of rat liver acyl‐coenzyme A oxidase resides in the carboxy terminus. Mol. Cell. Biol. 9:83‐91.
   Moreau, P., Hen, R., Wasylyk, B., Everett, R., Gaub, M.P., and Chambon, P. 1981. The SV‐40 base pair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucl. Acids Res. 9:6047‐6059.
   Mortensen, R., Chesnut, J.D., Hoeffler, J.P., and Kingston, R.E. 1997. Selection of transfected mammalian cells. In Current Protocols in Molecular Biology (F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, eds.) pp. 9.5.1‐9.5.19. John Wiley & Sons, New York.
   Moss, B. and Earl, P.L. 1991. Overview of the vaccinia virus expression system. In Current Protocols in Molecular Biology (F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, eds.) pp. 16.15.1‐16.15.5. John Wiley & Sons, New York.
   Munro, S. and Pelham, H.R.B. 1987. A C‐terminal signal prevents secretion of luminal ER proteins. Cell 48:899‐907.
   Murhammer, D. and Goochee, C.F. 1990. Sparged animal cell bioreactors: Mechanism of cell damage and Pluronic F68 protection. Biotechnol. Prog. 6:391‐397.
   Myers, M.G. Jr., Sun, X.J., and White, M.F. 1994. The IRS‐1 signaling system. Trends Biochem. Sci. 19:289‐293.
   Neuhaus, G., Neuhaus‐Url, G., Gruss, P., and Schweiger, H.G. 1984. Enhancer‐controlled expression of the simian virus 40 T‐antigen in the green alga Acetabularia. EMBO J. 3:2169‐2172.
   Neurath, H. 1989. Proteolytic processing and physiological regulation. Trends Biochem. Sci. 14:268‐271.
   Okamoto, M., Nakai, M., Nakayama, C., Yanagi, H., Matsui, H., Noguchi, H., Namiki, M., Sakai, J., Kadota, K., and Fukui, M. 1991. Purification and characterization of three forms of differently glycosylated recombinant human granulocyte macrophage colony stimulating factor. Arch. Biochem. Biophys. 286:562‐568.
   Page, M.J. and Sydenham, M.A. 1991. High level expression of the humanized monoclonal antibody CAMPATH‐1H in Chinese hamster ovary cells. Biotechnology 9:64‐68.
   Pak, S.C.O., Hunt, M.W., Bridges, M.J., Sleigh, M.J., and Gray, P.P. 1996. Super‐CHO: A cell line capable of autocrine growth under fully defined protein‐free conditions. Cytotechnology 22:139‐146.
   Pelham, H.R.B. and Bienz, M. 1982. A synthetic heat‐shock promoter element confers heat‐inducibility on the herpes simplex virus thymidine kinase gene. EMBO J. 1:1473‐1477.
   Pouwels, P.H., Enger‐Valk, B.E., Brammar, W.J.(eds.) 1988. Vectors for animal cells. In Cloning Vectors (ch. VIII‐I). Elsevier, Amsterdam.
   Reitman, M.L. and Kornberg, S. 1981. Lysosomal enzyme targetting: N‐acetylglucosaminyl‐phosphotransferase selectively phosphorylates native lysosomal enzymes. J. Biol. Chem. 256:11977‐11980.
   Rosenquist, G.L. and Nicholas, H.B. Jr. 1993. Analysis of sequence requirements for protein tyrosine sulfation. Protein Sci. 2:215‐222.
   Rothman, J.E. and Orci, L. 1992. Molecular dissection of the secretory pathway. Nature 335:409‐415.
   Rothman, M.E. 1994. Mechanisms of intracellular protein transport. Nature 372:55‐63.
   Shelikoff, M., Sinskey, A.J., and Stephanopoulos, G. 1994. The effect of protein synthesis inhibitors on the glycosylation site occupancy of recombinant human prolactin. Cytotechnology 15:195‐208.
   Shitara, K., Nakamura, K., Tokutake‐Tanaka, Y., Fukushima, M., and Hanai, N. 1994. A new vector for the high level expression of chimeric antibodies in myeloma cells. J. Immunol. Methods 167:271‐278.
   Simonsen, C. and Levinson, A. 1983. Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc. Natl. Acad. Sci. U.S.A. 80:2495‐2499.
   Stanley, P. 1989. Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol. Cell. Biol. 9:377‐383.
   Stanley, P. 1991. Glycosylation engineering: CHO mutants for the production of glycoproteins with tailored carbohydrates. In Protein Glycosylation: Cellular, Biotechnological and Analytical Aspects (H.S. Conradt, ed.) pp. 225‐234. GBF Monographs, VCH Publishers, New York.
   Stenflo, J., Holme, E., Lindstedt, S., Chandramuli, N., Huang, L., Tam, J., and Merrifield, R. 1989. Hydroxylation of aspartic acid in domains homologous to the epidermal growth factor precursor is catalyzed by a 2‐oxoglutarate‐dependent dioxygenase. Proc. Natl. Acad. Sci. U.S.A. 86:444‐447.
   Suttie, J.W. 1985. Vitamin K–dependent carboxylase. Annu. Rev. Biochem. 54:459‐477.
   Teige, M., Weidermann, R., and Kretzmer, G. 1994. Problems with serum‐free production of antithrombin III regarding proteolytic activity and product quality. J. Biotechnol. 34:101‐105.
   Tsang, T.C., Harris, D.T., Akporiaye, E.T., Chu, R.S., Brailey, J., Liu, F., Vasanwala, F.H., Schluter, S.F., and Hersch, E.M. 1997. Mammalian expression vector with two multiple cloning sites for expression of two foreign genes. BioTechniques 22:68.
   Urlaub, G. and Chasin, L.A. 1980. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. U.S.A. 77:4216‐4220.
   Von Heijne, G. 1983. Patterns of amino acids near signal‐sequence cleavage sites. Eur. J. Biochem. 133:17‐21.
   Von Heijne, G. 1984. Analysis of the distribution of charged residues in the N‐terminal region of signal sequences: Implications for protein export in prokaryotic and eukaryotic cells. EMBO J. 3:2315‐2318.
   Walter, P. and Lingappa, V.R. 1986. Mechanism of protein translocation across the endoplasmic reticulum membrane. Annu. Rev. Cell. Biol. 2:499‐516.
   Wirth, M. and Hauser, H. 1993. Genetic engineering of animal cells. In Biotechnology: A Multivolume Comprehensive Treatise, Vol. 2 2nd ed., pp. 663‐744. VCH Publishers, New York.
   Wurm, F.M. and Petropoulos, J. 1994. Plasmid integration, amplification and cytogenetics in CHO cells: Questions and comments. Biologicals 22:95‐102.
   Yeung, C., Ingolia, E., Bobonis, C., Dunbar, B., Riser, M., Siciliano, M., and Kellems, R. 1983. Selective overproduction of adenosine deaminase in cultured mouse cells. J. Biol. Chem. 258:8338‐8346.
PDF or HTML at Wiley Online Library