Overview on the Expression of Toxic Gene Products in Escherichia coli

Fakhri Saïda1

1 University of California San Diego, La Jolla, California
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 5.19
DOI:  10.1002/0471140864.ps0519s50
Online Posting Date:  November, 2007
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Despite the development of various nonbacterial expression systems, Escherichia coli (E. coli) remains the host of choice for recombinant protein expression. Its culture is simple, fast, inexpensive, and highly efficient (tens of milligrams of pure proteins are typically obtained within 48 hours using as little as 1 liter of culture). Unfortunately, many toxic genes (from various organisms) severely interfere with the physiology of E. coli. As a result, expression yields are dramatically diminished, and sometimes abolished. In fact, some genes are so toxic that E. coli cannot maintain their expression vector during the growth phase (the phase during which recombinant gene expression is presumably repressed). Therefore, modified expression vectors, modified E. coli strains, and appropriate cultivation protocols are needed. This overview discusses several special strategies successfully used to express toxic genes in E. coli. Curr. Protoc. Protein Sci. 50:5.19.1‐5.19.13. © 2007 by John Wiley & Sons, Inc.

Keywords: toxic genes; expression; E. coli

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Expression Protocols That Do Not Require Host or Vector Modification
  • Experimental Selection of New E. coli Strains That Tolerate Toxic Genes
  • Trans Delivery of T7 RNAP Using Bacteriophage Derivatives
  • Modification of the Promoter Region
  • Addition of Transcription Terminators
  • Modification of the Coding Sequence
  • Control of the Copy Number
  • Addition of Cell Death Modules
  • Conclusion
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Amitai, G. and Pietrokovski, S. 1999. Fine‐tuning an engineered intein. Nat. Biotechnol. 17:854‐855.
   Asoh, S., Nishimaki, K., Nanbu‐Wakao, R., and Ohta, S. 1998. A trace amount of the human pro‐apoptotic factor Bax induces bacterial death accompanied by damage of DNA. J. Biol. Chem. 273:11384‐11391.
   Bignell, C. and Thomas, C.M. 2001. The bacterial ParA‐ParB partitioning proteins. J. Biotechnol. 91:1‐34.
   Bocanegra, J.A., Bejarano, L.A., and Valdivia, M.M. 1997. Expression of the highly toxic centromere binding protein CENP‐B in E. coli using the pET system in the absence of the inducer IPTG. Biotechniques 22:798‐800, 802.
   Boomershine, W.P., Raj, M.L., Gopalan, V., and Foster, M.P. 2003. Preparation of uniformly labeled NMR samples in Escherichia coli under the tight control of the araBAD promoter: Expression of an archaeal homolog of the RNase P Rpp29 protein. Protein Expr. Purif. 28:246‐251.
   Bouet, J.Y., Campo, N.J., Krisch, H.M., and Louarn, J.M. 1996. The effects on Escherichia coli of expression of the cloned bacteriophage T4 nucleoid disruption (ndd) gene. Mol. Microbiol. 20:519‐528.
   Bowers, L.M., Lapoint, K., Anthony, L., Pluciennik, A., and Filutowicz, M. 2004. Bacterial expression system with tightly regulated gene expression and plasmid copy number. Gene 340:11‐18.
   Brosius, J. 1984. Toxicity of an overproduced foreign gene product in Escherichia coli and its use in plasmid vectors for the selection of transcription terminators. Gene 27:161‐172.
   Brown, W.C. and Campbell, J.L. 1993. A new cloning vector and expression strategy for genes encoding proteins toxic to Escherichia coli. Gene 127:99‐103.
   Bruckner, R. and Titgemeyer, F. 2002. Carbon catabolite repression in bacteria: Choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209:141‐148.
   Chen, E. 1994. Host strain selection for bacterial expression of toxic proteins. Methods Enzymol. 241:29‐46.
   de Crombrugghe, B., Busby, S., and Buc, H. 1984. Cyclic AMP receptor protein: Role in transcription activation. Science 224:831‐838.
   Durand, S., Richard, G., Bisaglia, M., Laalami, S., Bontems, F., and Uzan, M. 2006. Activation of RegB endoribonuclease by S1 ribosomal protein requires an 11 nt conserved sequence. Nucleic Acids Res. 34:6549‐6560.
   Evans, T.C., Jr., Benner, J., and Xu, M.Q. 1998. Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. 7:2256‐2264.
   Giacalone, M.J., Gentile, A.M., Lovitt, B.T., Berkley, N.L., Gunderson, C.W., and Surber, M.W. 2006. Toxic protein expression in Escherichia coli using a rhamnose‐based tightly regulated and tunable promoter system. Biotechniques 40:355‐364.
   Guzman, L.M., Belin, D., Carson, M.J., and Beckwith, J. 1995. Tight regulation, modulation, and high‐level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177:4121‐4130.
   Hall, T.A. and Brown, J.W. 2002. Archaeal RNase P has multiple protein subunits homologous to eukaryotic nuclear RNase P proteins. RNA 8:296‐306.
   Ham, T.S., Lee, S.K., Keasling, J.D., and Arkin, A.P. 2006. A tightly regulated inducible expression system utilizing the fim inversion recombination switch. Biotechnol. Bioeng. 94:1‐4.
   Hasan, N. and Szybalski, W. 1987. Control of cloned gene expression by promoter inversion in vivo: Construction of improved vectors with a multiple cloning site and the Ptac promoter. Gene 56:145‐151.
   Hillen, W. and Berens, C. 1994. Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu. Rev. Microbiol. 48:345‐369.
   Jayasena, V.K., Brown, D., Shtatland, T., and Gold, L. 1996. In vitro selection of RNA specifically cleaved by bacteriophage T4 RegB endonuclease. Biochemistry 35:2349‐2356.
   Jonasson, P., Liljeqvist, S., Nygren, P.A., and Stahl, S. 2002. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnol. Appl. Biochem. 35:91‐105.
   Kimura, M., Miki, T., Hiraga, S., Nagata, T., and Yura, T. 1979. Conditionally lethal amber mutations in the dnaA region of the Escherichia coli chromosome that affect chromosome replication. J. Bacteriol. 140:825‐834.
   Komai, T., Ishikawa, Y., Yagi, R., Suzuki‐Sunagawa, H., Nishigaki, T., and Handa, H. 1997. Development of HIV‐1 protease expression methods using the T7 phage promoter system. Appl. Microbiol. Biotechnol. 47:241‐245.
   Larsen, J.E., Gerdes, K., Light, J., and Molin, S. 1984. Low‐copy‐number plasmid‐cloning vectors amplifiable by derepression of an inserted foreign promoter. Gene 28:45‐54.
   Lebars, I., Hu, R.M., Lallemand, J.Y., Uzan, M., and Bontems, F. 2001. Role of the substrate conformation and of the S1 protein in the cleavage efficiency of the T4 endoribonuclease RegB. J. Biol. Chem. 276:13264‐13272.
   Lee, J.H., Minn, I., Park, C.B., and Kim, S.C. 1998. Acidic peptide‐mediated expression of the antimicrobial peptide buforin II as tandem repeats in Escherichia coli. Protein Expr. Purif. 12:53‐60.
   Lutz, R. and Bujard, H. 1997. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1‐I2 regulatory elements. Nucleic Acids Res. 25:1203‐1210.
   Manco, G., Adinolfi, E., Pisani, F.M., Ottolina, G., Carrea, G., and Rossi, M. 1998. Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone‐sensitive lipase subfamily. Biochem. J. 332 (Pt 1):203‐212.
   Miroux, B. and Walker, J.E. 1996. Over‐production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260:289‐298.
   Mishima, N., Mizumoto, K., Iwasaki, Y., Nakano, H., and Yamane, T. 1997. Insertion of stabilizing loci in vectors of T7 RNA polymerase‐mediated Escherichia coli expression systems: A case study on the plasmids involving foreign phospholipase D gene. Biotechnol. Prog. 13:864‐868.
   Muller‐Hill, B. 1975. Lac repressor and lac operator. Prog. Biophys. Mol. Biol. 30:227‐252.
   Muralidharan, V. and Muir, T.W. 2006. Protein ligation: An enabling technology for the biophysical analysis of proteins. Nat. Methods 3:429‐438.
   Nordstrom, K. and Uhlin, B.E. 1992. Runaway‐replication plasmids as tools to produce large quantities of proteins from cloned genes in bacteria. Biotechnology 10:661‐666.
   O'Connor, C.D. and Timmis, K.N. 1987. Highly repressible expression system for cloning genes that specify potentially toxic proteins. J. Bacteriol. 169:4457‐4462.
   Pan, S.H. and Malcolm, B.A. 2000. Reduced background expression and improved plasmid stability with pET vectors in BL21 (DE3). Biotechniques 29:1234‐1238.
   Podhajska, A.J., Hasan, N., and Szybalski, W. 1985. Control of cloned gene expression by promoter inversion in vivo: Construction of the heat‐pulse‐activated att‐nutL‐p‐att‐N module. Gene 40:163‐168.
   Poletto, S.S., da Fonseca, I.O., de Carvalho, L.P., Basso, L.A., and Santos, D.S. 2004. Selection of an Escherichia coli host that expresses mutant forms of Mycobacterium tuberculosis 2‐trans enoyl‐ACP(CoA) reductase and 3‐ketoacyl‐ACP(CoA) reductase enzymes. Protein Expr. Purif. 34:118‐125.
   Rose, R.E. 1988. The nucleotide sequence of pACYC184. Nucleic Acids Res. 16:355.
   Saïda, F., Odaert, B., Uzan, M., and Bontems, F. 2004. First structural investigation of the restriction ribonuclease RegB: NMR spectroscopic conditions, 13C/15N double‐isotopic labelling and two‐dimensional heteronuclear spectra. Protein Expr. Purif. 34:158‐165.
   Saïda, F., Uzan, M., Lallemand, J.Y., and Bontems, F. 2003. New system for positive selection of recombinant plasmids and dual expression in yeast and bacteria based on the restriction ribonuclease RegB. Biotechnol. Prog. 19:727‐733.
   Sanson, B., Hu, R.M., Troitskayadagger, E., Mathy, N., and Uzan, M. 2000. Endoribonuclease RegB from bacteriophage T4 is necessary for the degradation of early but not middle or late mRNAs. J. Mol. Biol. 297:1063‐1074.
   Schulman, L.H. and Pelka, H. 1985. In vitro conversion of a methionine to a glutamine‐acceptor tRNA. Biochemistry 24:7309‐7314.
   Seong, B.L., Lee, C.P., and RajBhandary, U.L. 1989. Suppression of amber codons in vivo as evidence that mutants derived from Escherichia coli initiator tRNA can act at the step of elongation in protein synthesis. J. Biol. Chem. 264:6504‐6508.
   Sorensen, H.P. and Mortensen, K.K. 2005a. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnol. 115:113‐128.
   Sorensen, H.P. and Mortensen, K.K. 2005b. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb. Cell. Fact. 4:1.
   Studier, F.W. and Moffatt, B.A. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high‐level expression of cloned genes. J. Mol. Biol. 189:113‐130.
   Suter‐Crazzolara, C. and Unsicker, K. 1995. Improved expression of toxic proteins in E. coli. Biotechniques 19:202‐204.
   Tatsuda, D., Arimura, H., Tokunaga, H., Ishibashi, M., Arakawa, T., and Tokunaga, M. 2001. Expression and purification of cytokine receptor homology domain of human granulocyte‐colony‐stimulating factor receptor fusion protein in Escherichia coli. Protein Expr. Purif. 21:87‐91.
   Terpe, K. 2006. Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72:211‐222.
   Unnithan, S., Green, L., Morrissey, L., Binkley, J., Singer, B., Karam, J., and Gold, L. 1990. Binding of the bacteriophage T4 regA protein to mRNA targets: An initiator AUG is required. Nucleic Acids Res. 18:7083‐7092.
   Uzan, M. 2001. Bacteriophage T4 RegB endoribonuclease. Methods Enzymol. 342:467‐480.
   Varshney, U. and RajBhandary, U.L. 1990. Initiation of protein synthesis from a termination codon. Proc. Natl. Acad. Sci. U.S.A. 87:1586‐1590.
   Warren, J.W., Walker, J.R., Roth, J.R., and Altman, E. 2000. Construction and characterization of a highly regulable expression vector, pLAC11, and its multipurpose derivatives, pLAC22 and pLAC33. Plasmid 44:138‐151.
   Worrall, A.F. and Connolly, B.A. 1990. The chemical synthesis of a gene coding for bovine pancreatic DNase I and its cloning and expression in Escherichia coli. J. Biol. Chem. 265:21889‐21895.
   Wulfing, C. and Pluckthun, A. 1993. A versatile and highly repressible Escherichia coli expression system based on invertible promoters: Expression of a gene encoding a toxic product. Gene 136:199‐203.
   Yike, I., Zhang, Y., Ye, J., and Dearborn, D.G. 1996. Expression in Escherichia coli of cytoplasmic portions of the cystic fibrosis transmembrane conductance regulator: Apparent bacterial toxicity of peptides containing R‐domain sequences. Protein Expr. Purif. 7:45‐50.
   Zhang, C.C., Glenn, K.A., Kuntz, M.A., and Shapiro, D.J. 2000. High level expression of full‐length estrogen receptor in Escherichia coli is facilitated by the uncoupler of oxidative phosphorylation, CCCP. J. Steroid Biochem. Mol. Biol. 74:169‐178.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library