Overview of Approaches to Preventing and Avoiding Proteolysis During Expression and Purification of Proteins

Barry J. Ryan1, Gary T. Henehan1

1 Food Science and Environmental Health, Dublin Institute of Technology, Dublin, Ireland
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 5.25
DOI:  10.1002/0471140864.ps0525s71
Online Posting Date:  February, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Proteases are enzymes that cleave proteins. They occur widely in nature and play a fundamental role in cellular homeostasis; however, their presence can result in unwanted protein degradation during recombinant protein expression and purification. This unit introduces proteases, specifically focusing on the types commonly encountered during production of recombinant proteins. The strategies used to avoid and to prevent proteolysis are also described, with extensive consideration of the molecular, technical, and logistic methodologies involved. Curr. Protoc. Protein Sci. 71:5.25.1‐5.25.7. © 2013 by John Wiley & Sons, Inc.

Keywords: protease; proteolysis; recombinant protein

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategies for Avoiding Proteolysis
  • Strategies for Preventing Proteolysis
  • Special Problem of Expression of Protein Fragments
  • Summary
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Baneyx, F. and Mujacic, M. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22:1399‐1408.
   Barth, S., Huhn, M., Matthey, B., Klimka, A., Galinski, E.A. and Engert, A. 2000. Compatible‐solute‐supported periplasmic expression of functional recombinant proteins under stress conditions. Appl. Environ. Microbiol. 66:1572‐1579.
   Bowie, J.U. and Sauer, R.T. 1989. Identification of C‐terminal extensions that protect proteins from intracellular proteolysis. J. Biol. Chem. 264:7596‐7602.
   Buckingham, S.D. 2003. RIPping and folding: Regulated intramembrane proteolysis. Signalling Scissors: New Perspectives on Proteases. Proceedings of the 3rd Horizon Symposium, Palazzo Argaza, Italy, October 23‐25, 2003. http://www.nature.com/horizon/proteases/background/ripping.html.
   Caldwell, R.B. and Lattemann, C.T. 2004. Simple and reliable method to precipitate proteins from bacterial culture supernatant. Appl. Environ. Microbiol. 70:610‐612.
   Cheng, C.‐H. and Lee, W.C. 2010. Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double‐tagged fusion proteins. Microb. Cell Factories 9:63.
   Chung, C.H. and Goldberg, A.L. 1981. The product of the lon (capR) gene in Escherichia coli is the ATP‐dependent protease, protease La. Proc. Natl. Acad. Sci. U.S.A. 78:4931‐4935.
   Demain, A.L and Vaishnav, P. 2009. Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 27:297‐306.
   French, C., Keshavarz‐Moore, E., and Ward, J.M. 1996. Development of a simple method for the recovery of recombinant proteins from the E. coli periplasm. Enzyme Microb. Technol. 19:332‐338.
   Galloway, C.A., Sowden, M.P., and Smith, H.C. 2003. Increasing the yield of soluble recombinant protein expressed in E. coli by induction during late log phase. Biotechniques 34:524‐530.
   Huang, C.J., Lin, H., and Yang, X. 2012. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J. Industrial Microbiol. Biotechnol. 39:383‐399.
   King, R.W., Deshaies, R.J., Peters, J.M., and Kirschner, M.W. 1996. How proteolysis drives the cell cycle. Science 6:1652‐1659.
   Kuddus, M. and Ramteke, P.W. 2012. Recent developments in production and biotechnological applications of cold‐active microbial proteases. Crit. Rev. Microbiol. 38:330‐338.
   Leidhold, C. and Voos, W. 2007. Chaperones and proteases—guardians of protein integrity in eukaryotic organelles. Ann. N.Y. Acad. Sci. 1113:72‐86.
   Luger, K., Hommel, U., Herold, M., Hofsteenge, J., and Kirschner, K. 1989. Correct folding of circularly permuted variants of a beta alpha barrel enzyme in vivo. Science 243:206‐210.
   Makrides, S.C. 1996. Strategies for achieving high‐level expression of genes in Escherichia coli. Microbiol. Rev. 60:512‐538.
   Martensen, P.M. and Justesen, J. 2001. Specific inhibitors prevent proteolytic degradation of recombinant proteins expressed in High Five cells. Biotechniques 30:782‐788.
   Mergulhão, F.J.M., Summers, D.K., and Monteiro, G.A. 2005. Recombinant protein secretion in Escherichia coli.Biotechnol. Adv. 23:177‐202.
   Mujacic, M., Cooper, K.W., and Baneyx, F. 1999. Cold‐inducible cloning vectors for low‐temperature protein expression in Escherichia coli: Application to the production of a toxic and proteolytically sensitive fusion protein. Gene 238:325‐332.
   Ni, Y. and Chen, R. 2009. Extracellular recombinant protein production from Escherichia coli. Biotechnol. Lett. 31:1661‐1670.
   Peti, W. and Page, R. 2005. Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Exp. Purific. 51:1‐10.
   Rao, M.B., Tanksale, A.T., Ghatge, M.S., and Deshpande, V.V. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62:597‐635.
   Ryan, B. 2011. Avoiding proteolysis during protein chromatography. Methods Mol. Biol. 681:61‐71.
   Rawlings, N.D., Barrett, A.J., and Bateman, A. 2012. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucl. Acids Res. 40:D343‐D350.
   Samuelson, J.C. 2011. Recent developments in difficult protein expression: A guide to E. coli strains, promoters, and relevant host mutations. Methods Mol. Biol. 705:195‐209.
   Simpson, R. 2010. Stabilization of proteins for storage. Cold Spring Harb. Protoc. 2010:pdb.top79.
   Sorensen, H.P and Mortensen, K.K. 2005. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb. Cell Factories 4:1.
   Steiner, D.F. 2010. On the discovery of precursor processing. Methods Mol. Biol. 768:3‐11.
   Structural Genomics Consortium; China Structural Genomics Consortium; Northeast Structural Genomics Consortium, Gräslund, S., Nordlund, P., Weigelt, J., Hallberg, B.M., Bray, J., Gileadi, O., Knapp, S., Oppermann, U., Arrowsmith, C., Hui, R., Ming, J., dhe‐Paganon, S., Park, H.W., Savchenko, A., Yee, A., Edwards, A., Vincentelli, R., Cambillau, C., Kim, R., Kim, S.H., Rao, Z., Shi, Y., Terwilliger, T.C., Kim, C.Y., Hung, L.W., Waldo, G.S., Peleg, Y., Albeck, S., Unger, T., Dym, O., Prilusky, J., Sussman, J.L., Stevens, R.C., Lesley, S.A., Wilson, I.A., Joachimiak, A., Collart, F., Dementieva, I., Donnelly, M.I., Eschenfeldt, W.H., Kim, Y., Stols, L., Wu, R., Zhou, M., Burley, S.K., Emtage, J.S., Sauder, J.M., Thompson, D., Bain, K., Luz, J., Gheyi, T., Zhang, F., Atwell, S., Almo, S.C., Bonanno, J.B., Fiser, A., Swaminathan, S., Studier, F.W., Chance, M.R., Sali, A., Acton, T.B., Xiao, R., Zhao, L., Ma, L.C., Hunt, J.F., Tong, L., Cunningham, K., Inouye, M., Anderson, S., Janjua, H., Shastry, R., Ho, C.K., Wang, D., Wang, H., Jiang, M., Montelione, G.T., Stuart, D.I., Owens, R.J., Daenke, S., Schütz, A., Heinemann, U., Yokoyama, S., Büssow, K., and Gunsalus, K.C. 2008. Protein production and purification. Nat. Methods 5:135‐146.
   Terpe, K. 2003. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60:523‐533.
   Vanaman, T.C. and Bradshaw, R.A. 1999. Proteases in cellular regulation. J. Biol. Chem. 274:20047.
   Vandenabeele, P., Orrenius, S., and Zhivotovsky, B. 2005. Serine proteases and calpains fulfill important supporting roles in the apoptotic tragedy of the cellular opera. Cell Death Different. 12:1219‐1224.
   Vera, A., Arís, A., Carrió, M., González‐Montalbán, N., and Villaverde, A. 2005. Lon and ClpP proteases participate in the physiological disintegration of bacterial inclusion bodies. J. Biotechnol. 119:163‐171.
   Whitehead, T.A., Bergeron, L.M., and Clark, D.S. 2009. Tying up the loose ends: Circular permutation decreases the proteolytic susceptibility of recombinant proteins. Protein Eng. Design Select. 22:607‐613.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library