Overview on Concepts and Applications of Fab Antibody Fragments

Christoph Rader1

1 Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 6.9
DOI:  10.1002/0471140864.ps0609s55
Online Posting Date:  February, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


In this overview, the Fab molecule is introduced and discussed as the first generated antibody fragment, which still dominates basic research and clinical applications. The unit contains a concepts section and an applications section. In the concepts section, the two principal methods for producing Fab, as well as the generation and directed evolution of Fab by phage display, are described. The applications section discusses Fab in clinical applications, as well as their increasingly important role in the determination of the three‐dimensional structures of transmembrane proteins. Curr. Protoc. Protein Sci. 55:6.9.1‐6.9.14. © 2009 by John Wiley & Sons, Inc.

Keywords: monoclonal antibodies; Fab; papain; E. coli; phage display; co‐crystallization

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Concepts
  • Applications
  • Conclusion
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Almagro, J.C., and Fransson, J. 2008. Humanization of antibodies. Front. Biosci. 13:1619‐1633.
   Barbas, C.F. 3rd. 1995. Synthetic human antibodies. Nat. Med. 1:837‐839.
   Barbas, C.F., 3rd, Kang, A.S., Lerner, R.A., and Benkovic, S.J. 1991. Assembly of combinatorial antibody libraries on phage surfaces: The gene III site. Proc. Natl. Acad. Sci. USA 88:7978‐7982.
   Barbas, C.F., 3rd, Hu, D., Dunlop, N., Sawyer, L., Cababa, D., Hendry, R.M., Nara, P.L., and Burton, D.R. 1994. In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross‐reactivity. Proc. Natl. Acad. Sci. U.S.A. 91:3809‐3813.
   Barbas, C.F., 3rd, Burton, D.R., Scott, J.K., and Silverman, G.J. 2001. Phage Display: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
   Better, M., Chang, C.P., Robinson, R.R., and Horwitz, A.H. 1988. Escherichia coli secretion of an active chimeric antibody fragment. Science 240:1041‐1043.
   Binz, H.K., Amstutz, P., and Plückthun, A. 2005. Engineering novel binding proteins from nonimmunoglobulin domains. Nat. Biotechnol. 23:1257‐1268.
   Blick, S.K. and Curran, M.P. 2007. Certolizumab pegol: In Crohn's disease. BioDrugs 21:195‐201; discussion 202‐203.
   Buchner, J. and Rudolph, R. 1991. Renaturation, purification and characterization of recombinant Fab‐fragments produced in Escherichia coli. Biotechnology (NY) 9:157‐162.
   Burton, D.R., Barbas, C.F., 3rd, Persson, M.A., Koenig, S., Chanock, R.M., and Lerner, R.A. 1991. A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. U.S.A. 88:10134‐10137.
   Calarese, D.A., Scanlan, C.N., Zwick, M.B., Deechongkit, S., Mimura, Y., Kunert, R., Zhu, P., Wormald, M.R., Stanfield, R.L., Roux, K.H., Kelly, J.W., Rudd, P.M., Dwek, R.A., Katinger, H., Burton, D.R., and Wilson, I.A. 2003. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300:2065‐2071.
   Chen, Y., Wiesmann, C., Fuh, G., Li, B., Christinger, H.W., McKay, P., de Vos, A.M., and Lowman, H.B. 1999. Selection and analysis of an optimized anti‐VEGF antibody: Crystal structure of an affinity‐matured Fab in complex with antigen. J. Mol. Biol. 293:865‐881.
   Cho, H.S., Mason, K., Ramyar, K.X., Stanley, A.M., Gabelli, S.B., Denney, D.W., Jr., and Leahy, D.J. 2003. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421:756‐760.
   Chowdhury, P.S. and Pastan, I. 1999. Improving antibody affinity by mimicking somatic hypermutation in vitro. Nat. Biotechnol. 17:568‐572.
   Chung, J., Rader, C., Popkov, M., Hur, Y.M., Kim, H.K., Lee, Y.J., and Barbas, C.F., 3rd. 2004. Integrin alphaIIbbeta3‐specific synthetic human monoclonal antibodies and HCDR3 peptides that potently inhibit platelet aggregation. FASEB J. 18:361‐363.
   Corisdeo, S. and Wang, B. 2004. Functional expression and display of an antibody Fab fragment in Escherichia coli: Study of vector designs and culture conditions. Protein Expr. Purif. 34:270‐279.
   Davies, D.R., Padlan, E.A., and Segal, D.M. 1975. Three‐dimensional structure of immunoglobulins. Annu. Rev. Biochem. 44:639‐667.
   Day, P.W., Rasmussen, S.G., Parnot, C., Fung, J.J., Masood, A., Kobilka, T.S., Yao, X.J., Choi, H.J., Weis, W.I., Rohrer, D.K., and Kobilka, B.K. 2007. A monoclonal antibody for G protein‐coupled receptor crystallography. Nat. Methods 4:927‐929.
   de Haard, H.J., van Neer, N., Reurs, A., Hufton, S.E., Roovers, R.C., Henderikx, P., de Bruine, A.P., Arends, J.W., and Hoogenboom, H.R. 1999. A large non‐immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274:18218‐18230.
   Fellouse, F.A., Wiesmann, C., and Sidhu, S.S. 2004. Synthetic antibodies from a four‐amino‐acid code: A dominant role for tyrosine in antigen recognition. Proc. Natl. Acad. Sci. U.S.A. 101:12467‐12472.
   Fellouse, F.A., Li, B., Compaan, D.M., Peden, A.A., Hymowitz, S.G., and Sidhu, S.S. 2005. Molecular recognition by a binary code. J. Mol. Biol. 348:1153‐1162.
   Ferrara, N., Damico, L., Shams, N., Lowman, H., and Kim, R. 2006. Development of ranibizumab, an anti‐vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age‐related macular degeneration. Retina 26:859‐870.
   Frederickson, S., Renshaw, M.W., Lin, B., Smith, L.M., Calveley, P., Springhorn, J.P., Johnson, K., Wang, Y., Su, X., Shen, Y., and Bowdish, K.S. 2006. A rationally designed agonist antibody fragment that functionally mimics thrombopoietin. Proc. Natl. Acad. Sci. U.S.A. 103:14307‐14312.
   Gai, S.A. and Wittrup, K.D. 2007. Yeast surface display for protein engineering and characterization. Curr. Opin. Struct. Biol. 17:467‐473.
   Ghiara, J.B., Stura, E.A., Stanfield, R.L., Profy, A.T., and Wilson, I.A. 1994. Crystal structure of the principal neutralization site of HIV‐1. Science 264:82‐85.
   Hofer, T., Tangkeangsirisin, W., Kennedy, M.G., Mage, R.G., Raiker, S.J., Venkatesh, K., Lee, H., Giger, R.J., and Rader, C. 2007. Chimeric rabbit/human Fab and IgG specific for members of the Nogo‐66 receptor family selected for species cross‐reactivity with an improved phage display vector. J. Immunol. Methods 318:75‐87.
   Holliger, P. and Hudson, P.J. 2005. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23:1126‐1136.
   Hoogenboom, H.R. 2005. Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23:1105‐1116.
   Hoogenboom, H.R., Griffiths, A.D., Johnson, K.S., Chiswell, D.J., Hudson, P., and Winter, G. 1991. Multi‐subunit proteins on the surface of filamentous phage: Methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19:4133‐4137.
   Humphreys, D.P., Vetterlein, O.M., Chapman, A.P., King, D.J., Antoniw, P., Suitters, A.J., Reeks, D.G., Parton, T.A., King, L.M., Smith, B.J., Lang, V., and Stephens, P.E. 1998. F(ab′)2 molecules made from Escherichia coli produced Fab′ with hinge sequences conferring increased serum survival in an animal model. J. Immunol. Methods 217:1‐10.
   Humphreys, D.P., Heywood, S.P., Henry, A., Ait‐Lhadj, L., Antoniw, P., Palframan, R., Greenslade, K.J., Carrington, B., Reeks, D.G., Bowering, L.C., West, S., and Brand, H.A. 2007. Alternative antibody Fab′ fragment PEGylation strategies: Combination of strong reducing agents, disruption of the interchain disulphide bond and disulphide engineering. Protein Eng. Des. Sel. 20:227‐234.
   Hunte, C. and Michel, H. 2002. Crystallisation of membrane proteins mediated by antibody fragments. Curr. Opin. Struct. Biol. 12:503‐508.
   Huse, W.D., Sastry, L., Iverson, S.A., Kang, A.S., Alting‐Mees, M., Burton, D.R., Benkovic, S.J., and Lerner, R.A. 1989. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246:1275‐1281.
   Lei, S.P., Lin, H.C., Wang, S.S., Callaway, J., and Wilcox, G. 1987. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J. Bacteriol. 169:4379‐4383.
   Li, S., Schmitz, K.R., Jeffrey, P.D., Wiltzius, J.J., Kussie, P., and Ferguson, K.M. 2005. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7:301‐311.
   Meijer, P.J., Andersen, P.S., Haahr Hansen, M., Steinaa, L., Jensen, A., Lantto, J., Oleksiewicz, M.B., Tengbjerg, K., Poulsen, T.R., Coljee, V.W., Bregenholt, S., Haurum, J.S., and Nielsen, L.S. 2006. Isolation of human antibody repertoires with preservation of the natural heavy and light chain pairing. J. Mol. Biol. 358:764‐772.
   Movva, N.R., Nakamura, K., and Inouye, M. 1980. Amino acid sequence of the signal peptide of ompA protein, a major outer membrane protein of Escherichia coli. J. Biol. Chem. 255:27‐29.
   Müller, D. and Kontermann, R.E. 2007. Recombinant bispecific antibodies for cellular cancer immunotherapy. Curr. Opin. Mol. Ther. 9:319‐326.
   Nguyen, A., Reyes, A.E., 2nd, Zhang, M., McDonald, P., Wong, W.L., Damico, L.A., and Dennis, M.S. 2006. The pharmacokinetics of an albumin‐binding Fab (AB.Fab) can be modulated as a function of affinity for albumin. Protein Eng. Des. Sel. 19:291‐297.
   Nitta, T., Yagita, H., Azuma, T., Sato, K., and Okumura, K. 1989. Bispecific F(ab′)2 monomer prepared with anti‐CD3 and anti‐tumor monoclonal antibodies is most potent in induction of cytolysis of human T cells. Eur. J. Immunol. 19:1437‐1441.
   Popkov, M., Mage, R.G., Alexander, C.B., Thundivalappil, S., Barbas, C.F., 3rd, and Rader, C. 2003. Rabbit immune repertoires as sources for therapeutic monoclonal antibodies: The impact of kappa allotype‐correlated variation in cysteine content on antibody libraries selected by phage display. J. Mol. Biol. 325:325‐335.
   Popkov, M., Rader, C., and Barbas, C.F., 3rd. 2004. Isolation of human prostate cancer cell reactive antibodies using phage display technology. J. Immunol. Methods 291:137‐151.
   Porter, R.R. 1958. Separation and isolation of fractions of rabbit gamma‐globulin containing the antibody and antigenic combining sites. Nature 182:670‐671.
   Rader, C. 2001. Antibody libraries in drug and target discovery. Drug. Discov. Today 6:36‐43.
   Rader, C. and Barbas, C.F., 3rd. 1997. Phage display of combinatorial antibody libraries. Curr. Opin. Biotechnol. 8:503‐508.
   Rader, C., Cheresh, D.A., and Barbas, C.F., 3rd. 1998. A phage display approach for rapid antibody humanization: Designed combinatorial V gene libraries. Proc. Natl. Acad. Sci. USA 95:8910‐8915.
   Rader, C., Popkov, M., Neves, J.A., and Barbas, C.F., 3rd. 2002. Integrin alpha(v)beta3 targeted therapy for Kaposi's sarcoma with an in vitro evolved antibody. FASEB J. 16:2000‐2002.
   Rasmussen, S.G., Choi, H.J., Rosenbaum, D.M., Kobilka, T.S., Thian, F.S., Edwards, P.C., Burghammer, M., Ratnala, V.R., Sanishvili, R., Fischetti, R.F., Schertler, G.F., Weis, W.I., and Kobilka, B.K. 2007. Crystal structure of the human beta2 adrenergic G‐protein‐coupled receptor. Nature 450:383‐387.
   Rothe, C., Urlinger, S., Lohning, C., Prassler, J., Stark, Y., Jager, U., Hubner, B., Bardroff, M., Pradel, I., Boss, M., Bittlingmaier, R., Bataa, T., Frisch, C., Brocks, B., Honegger, A., and Urban, M. 2008. The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high‐affinity antibodies. J. Mol. Biol. 376:1182‐1200.
   Sidhu, S.S. and Fellouse, F.A. 2006. Synthetic therapeutic antibodies. Nat. Chem. Biol. 2:682‐688.
   Skerra, A. and Plückthun, A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240:1038‐1041.
   Smith, G.P. 1985. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 228:1315‐1317.
   Theakston, R.G. and Smith, D.C. 1997. Antivenoms. BioDrugs 7:366‐375.
   Tornetta, M., Fisher, D., O'Neil, K., Geng, D., Schantz, A., Brigham‐Burke, M., Lombardo, D., Fink, D., Knight, D., Sweet, R., and Tsui, P. 2007. Isolation of human anti‐idiotypic antibodies by phage display for clinical immune response assays. J. Immunol. Methods 328:34‐44.
   van den Beucken, T., Pieters, H., Steukers, M., van der Vaart, M., Ladner, R.C., Hoogenboom, H.R., and Hufton, S.E. 2003. Affinity maturation of Fab antibody fragments by fluorescent‐activated cell sorting of yeast‐displayed libraries. FEBS Lett. 546:288‐294.
   Venturi, M., Seifert, C., and Hunte, C. 2002. High level production of functional antibody Fab fragments in an oxidizing bacterial cytoplasm. J. Mol. Biol. 315:1‐8.
   Ye, J.D., Tereshko, V., Frederiksen, J.K., Koide, A., Fellouse, F.A., Sidhu, S.S., Koide, S., Kossiakoff, A.A., and Piccirilli, J.A. 2008. Synthetic antibodies for specific recognition and crystallization of structured RNA. Proc. Natl. Acad. Sci. USA 105:82‐87.
   Zhou, Y., Morais‐Cabral, J.H., Kaufman, A., and MacKinnon, R. 2001. Chemistry of ion coordination and hydration revealed by a K+ channel‐Fab complex at 2.0 A resolution. Nature 414:43‐48.
PDF or HTML at Wiley Online Library