Purification of Recombinant Human Tyrosinase from Insect Larvae Infected with the Baculovirus Vector

Monika B. Dolinska1, Paul T. Wingfield2, Yuri V. Sergeev1

1 National Eye Institute, National Institutes of Health, Bethesda, Maryland, 2 National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 6.15
DOI:  10.1002/cpps.37
Online Posting Date:  August, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The purification of an enzyme from insect larvae infected with a baculovirus vector is described. The enzyme tyrosinase is of biomedical importance and catalyzes the first rate‐limiting steps in melanin production. Tyrosinase mutations can result in oculocutaneous albinism type 1 (OCA1), an inherited eye disease associated with decreased melanin pigment production and vision defects. To simplify expression and subsequent purification, the extracellular domain is expressed in insect cells, produced in Trichoplusia ni larvae, and purified using affinity and size‐exclusion chromatography. The purified recombinant human tyrosinase is a soluble monomeric glycoprotein with an activity that mirrors the tyrosinase in vivo function. © 2017 by John Wiley & Sons, Inc.

Keywords: human tyrosinase; oculocutaneous albinism type 1; larval biomass; affinity chromatography; size‐exclusion chromatography; enzymatic activity

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Intra‐Melanosomal Tyrosinase Domain Expression and Purification
  • Support Protocol 1: Measurement of Tyrosinase Enzymatic Activity
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Intra‐Melanosomal Tyrosinase Domain Expression and Purification

  Materials
  • T. ni larvae biomass containing the protein of interest (e.g., Allotropic Tech)
  • Lysis buffer (see recipe)
  • Binding buffer (see recipe)
  • Elution buffer (see recipe)
  • Imidazole
  • Gel‐filtration buffer (see recipe)
  • Anti‐tyrosinase antibody (e.g., Santa Cruz Biotechnology T311)
  • Anti‐His antibody (e.g., Thermo Fisher Scientific)
  • 50‐ml conical tubes
  • Tissue homogenizer (e.g., Omni Tissue Homogenizer TH) and probes (e.g., Hard Tissue Omni Tip Homogenizer Probes)
  • Laboratory rotator (e.g., Boekel Scientific Orbitron Rotator)
  • Ultrasonic processor
  • 50‐ml high‐speed, round‐bottom centrifuge tubes (e.g., Thermo Scientific)
  • Centrifuge (e.g., Sorvall Lynx 4000) with fixed‐angle rotor (e.g., Fiberlite F21‐8 × 50y)
  • UV‐Vis spectrophotometer (e.g., NanoDrop 2000c)
  • Immobilized metal affinity chromatography (IMAC) column (e.g., GE Healthcare HisTrap FF Crude)
  • Chromatography system (e.g., Bio‐Rad BioLogic DuoFlow System)
  • Dialysis membranes, 10K molecular weight cutoff (e.g., SnakeSkin Dialysis Tubing or Slide‐A‐Lyzer Dialysis Cassettes)
  • Magnetic stir plate and stir bars
  • Gel‐filtration columns:
  • HiPrep 16/60 Sephacryl S‐100 (e.g., GE Healthcare)
  • Superdex 75 10/300 (e.g., GE Healthcare)
  • Gel analysis software (e.g., Silk Scientific, UN‐SCAN‐IT gel)
  • Additional materials and equipment for SDS‐PAGE (unit 10.1; Gallagher, ), Western blot (unit 10.8; Goldman, Harper, & Speicher, ), MALDI‐TOF/TOF (unit 16.1; Jiménez, Huang, Qui, & Burlingame, ), and sedimentation assays (unit 20.1; Sergeev, Dolinska, & Wingfield, )

Support Protocol 1: Measurement of Tyrosinase Enzymatic Activity

  Materials
  • 3,4‐dihydroxy‐L‐phenylalanine (L‐DOPA; e.g., Sigma‐Aldrich)
  • 10 mM sodium phosphate buffer (see appendix 2E),
  • Sample containing tyrosinase (see protocol 1Basic Protocol)
  • 96‐well polystyrene plates, clear‐bottomed
  • 37°C incubator
  • Microplate reader (e.g., SpectraMax i3 Multi‐Mode Microplate Detection Platform)
  • Additional reagents and equipment for enzymatic assays and determining Michaelis‐Menton kinetics (see unit 3.5; Allison, )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Allison, R. D. (2001). Kinetic assay methods. Current Protocols in Protein Science, 5, 3.5.1–3.5.11. doi: 10.1002/0471140864.ps0305s05.
  Dolinska, M. B., Kovaleva, E., Backlund, P., Wingfield, P. T., Brooks, B. P., & Sergeev, Y. V. (2014). Albinism‐causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity. PLoS One, 9, e84494. doi: 10.1371/journal.pone.0084494.
  Dolinska, M. B., Kus, N. J., Farney, S. K, Wingfield, P. T., Brooks B. P., & Sergeev, Y. V. (2017). Oculocutaneous albinism type 1: Link between mutations, tyrosinase conformational stability, and enzymatic activity. Pigment Cell & Melanoma Research, 30, 41–52. doi: 10.1111/pcmr.12546.
  Gallagher, S. R. (2012). One‐dimensional SDS gel electrophoresis of proteins. Current Protocols in Protein Science, 68, 10.1.1–10.1.44. doi: 10.1002/0471140864.ps1001s68.
  Garcia‐Borron, J. C., & Solano, F. (2002). Molecular anatomy of tyrosinase and its related proteins: Beyond the histidine‐bound metal catalytic center. Pigment Cell Research, 15, 162–173. doi: 10.1034/j.1600‐0749.2002.02012.x.
  Giebel, L. B., Tripathi, R. K., King, R. A., & Spritz, R. A. (1991). A tyrosinase gene missense mutation in temperature‐sensitive type I oculocutaneous albinism. A human homologue to the Siamese cat and the Himalayan mouse. The Journal of Clinical Investigation, 87, 1119–1122. doi: 10.1172/JCI115075.
  Goldman, A., Harper, S., & Speicher, D. W. (2016). Detection of proteins on blot membranes. Current Protocols in Protein Science, 86, 10.8.1‐10.8.11. doi: 10.1002/cpps.15.
  Gronskov, K., Ek, J., & Brondum‐Nielsen, K. (2007). Oculocutaneous albinism. Orphanet Journal of Rare Diseases, 2, 43. doi: 10.1186/1750‐1172‐2‐43.
  Hearing, V. J., Jr. (1987). Mammalian monophenol monooxygenase (tyrosinase): Purification, properties, and reactions catalyzed. Methods in Enzymology, 142, 154–165. doi: 10.1016/S0076‐6879(87)42024‐7.
  Imokawa, G., & Mishima, Y. (1984). Functional analysis of tyrosinase isozymes of cultured malignant melanoma cells during the recovery period following interrupted melanogenesis induced by glycosylation inhibitors. The Journal of Investigative Dermatology, 83, 196–201. doi: 10.1111/1523‐1747.ep12263562.
  Jeong, C. H., & Shim, K. H. (2004). Tyrosinase inhibitor isolated from the leaves of Zanthoxylum piperitum. Bioscience, Biotechnology, and Biochemistry, 68, 1984–1987. doi: 10.1271/bbb.68.1984.
  Jiménez, C., Huang, L., Qiu, Y., & Burlingame, A. (2001). Sample preparation for MALDI mass analysis of peptides and proteins. Current Protocols in Protein Science, 14, 16.3.1–16.3.6. doi: 10.1002/0471140864.ps1603s14.
  Lerch, K. (1987). Monophenol monooxygenase from Neurospora crassa. Methods in Enzymology, 142, 165–169. doi: 10.1016/S0076‐6879(87)42025‐9.
  Lopez‐Serrano, D., Solano, F., & Sanchez‐Amat, A. (2007). Involvement of a novel copper chaperone in tyrosinase activity and melanin synthesis in Marinomonas mediterranea. Microbiology, 153, 2241–2249. doi: 10.1099/mic.0.2007/006833‐0.
  Mach, H., Middaugh, C. R., & Denslow, N. (2001). Determining the identity and purity of recombinant proteins by UV absorption spectroscopy. Current Protocols in Protein Science, 1, 7.2.1–7.2.21. doi: 10.1002/0471140864.ps0702s01.
  Murphy, C. I., & Piwnica‐Worms, H. (2001). Overview of the baculovirus expression system. Current Protocols in Protein Science, 00, 5.4.1–5.4.4. doi: 10.1002/0471140864.ps0504s00.
  Olivares, C., & Solano, F. (2009). New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell & Melanoma Research, 22, 750–760. doi: 10.1111/j.1755‐148X.2009.00636.x.
  Sergeev, Y. V., Dolinska, M. B., & Wingfield, P. T. (2014). Thermodynamic analysis of weak protein interactions using sedimentation equilibrium. Current Protocols in Protein Science, 77, 20.13.1–20.13.15. doi: 10.1002/0471140864.ps2013s77.
  Simeonov, D. R., Wang, X., Wang, C., Sergeev, Y., Dolinska, M., Bower, M., … Adams, D. R. (2013). DNA variations in oculocutaneous albinism: An updated mutation list and current outstanding issues in molecular diagnostics. Human Mutation, 34, 827–835. doi: 10.1002/humu.22315.
  Wang, T., Waters, C. T., Jakins, T., Yates, J. R., Trump, D., Bradshaw, K., & Moore, A. T. (2005). Temperature sensitive oculocutaneous albinism associated with missense changes in the tyrosinase gene. The British Journal of Ophthalmology, 89, 1383–1384. doi: 10.1136/bjo.2005.070243.
  Wittbjer, A., Dahlback, B., Odh, G., Rosengren, A. M., Rosengren, E., & Rorsman, H. (1989). Isolation of human tyrosinase from cultured melanoma cells. Acta Dermato‐Venereologica, 69, 125–131.
  Wittbjer, A., Odh, G., Rosengren, A. M., Rosengren, E., & Rorsman, H. (1990a). Isolation of tyrosinase from bovine eyes. Pigment Cell Research, 3, 168–172. doi: 10.1111/j.1600‐0749.1990.tb00283.x.
  Wittbjer, A., Odh, G., Rosengren, A. M., Rosengren, E., & Rorsman, H. (1990b). Isolation of soluble tyrosinase from human melanoma cells. Acta Dermato‐Venereologica, 70, 291–294.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library